Zur Kurzanzeige

dc.date.accessioned2021-12-20T18:16:12Z
dc.date.available2021-12-20T18:16:12Z
dc.date.issued2021-09-17
dc.identifierdoi:10.17170/kobra-202112175282
dc.identifier.urihttp://hdl.handle.net/123456789/13449
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.language.isoengeng
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjecttropical glacierseng
dc.subjectArtesonrajueng
dc.subjectsurface energy fluxeseng
dc.subjectglacier mass balanceeng
dc.subjectdischargeeng
dc.subject.ddc500
dc.subject.ddc550
dc.titleDistributed Energy Balance Flux Modelling of Mass Balances in the Artesonraju Glacier and Discharge in the Basin of Artesoncocha, Cordillera Blanca, Perueng
dc.typeAufsatz
dcterms.abstractA distributed energy balance model (DEBAM) is applied to estimate the mass balance of the Artesonraju glacier in the Cordillera Blanca (CB), Peru, and to simulate the ensuing discharge into its respective basin, Artesoncocha. The energy balance model calibrations show that, by using seasonal albedos, reasonable results for mass balances and discharge can be obtained, as witnessed by annually aggregated Nash Sutcliffe coefficients (E) of 0.60–0.87 for discharge and of 0.58–0.71 for mass measurements carried out in the period 2004–2007. Mass losses between −1.42 and −0.45 m.w.e. are calculated for that period. The elevation line altitudes (ELAs), which lie between 5009 and 5050 m.a.s.l., are also well simulated, compared to those measured by the Unidad Glaciologica de Recursos Hídricos del Perú (UGRH). It is demonstrated that the net radiation which drives the energy balance and melting processes is mainly affected by the amount of reflected shortwave radiation from the different surfaces. Moreover, the longwave radiation sinks between 63 and 73% of solar radiative energy in the dry season. Further sensitivity studies indicate that the assumed threshold temperature T0 is crucial in mass balance simulations, as it determines the extension of areas with different albedos. An optimal T0 between 2.6 and 3.8 °C is deduced from these simulations.eng
dcterms.accessRightsopen access
dcterms.creatorLozano Gacha, María Fernanda
dcterms.creatorKoch, Manfred
dc.relation.doidoi:10.3390/cli9090143
dc.subject.swdPeruger
dc.subject.swdArtesonraju-Gletscherger
dc.subject.swdMassenbilanzger
dc.subject.swdSchmelzwasserger
dc.subject.swdOberflächeger
dc.subject.swdEnergiebilanzger
dc.type.versionpublishedVersion
dcterms.source.identifiereissn:2225-1154
dcterms.source.issueIssue 9
dcterms.source.journalClimateeng
dcterms.source.volumeVolume 9
kup.iskupfalse
dcterms.source.articlenumber143


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Namensnennung 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Namensnennung 4.0 International