Zur Kurzanzeige

dc.date.accessioned2022-11-14T13:10:26Z
dc.date.available2022-11-14T13:10:26Z
dc.date.issued2022-10-30
dc.identifierdoi:10.17170/kobra-202211147108
dc.identifier.urihttp://hdl.handle.net/123456789/14248
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kassel
dc.language.isoeng
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjecttransfer learningeng
dc.subjectwind powereng
dc.subjectphotovolatic powereng
dc.subjectautoencoderseng
dc.subjectdeep learningeng
dc.subjecttime serieseng
dc.subject.ddc620
dc.titleMulti-Task Autoencoders and Transfer Learning for Day-Ahead Wind and Photovoltaic Power Forecastseng
dc.typeAufsatz
dcterms.abstractIntegrating new renewable energy resources requires robust and reliable forecasts to ensure a stable electrical grid and avoid blackouts. Sophisticated representation learning techniques, such as autoencoders, play an essential role, as they allow for the extraction of latent features to forecast the expected generated wind and photovoltaic power for the next seconds up to days. Thereby, autoencoders reduce the required training time and the time spent in manual feature engineering and often improve the forecast error. However, most current renewable energy forecasting research on autoencoders focuses on smaller forecast horizons for the following seconds and hours based on meteorological measurements. At the same time, larger forecast horizons, such as day-ahead power forecasts based on numerical weather predictions, are crucial for planning loads and demands within the electrical grid to prevent power failures. There is little evidence on the ability of autoencoders and their respective forecasting models to improve through multi-task learning and time series autoencoders for day-ahead power forecasts. We can close these gaps by proposing a multi-task learning autoencoder based on the recently introduced temporal convolution network. This approach reduces the number of trainable parameters by 38 for photovoltaic data and 202 for wind data while having the best reconstruction error compared to nine other representation learning techniques. At the same time, this model decreases the day-ahead forecast error up to 18.3% for photovoltaic parks and 1.5% for wind parks. We round off these results by analyzing the influences of the latent size and the number of layers to fine-tune the encoder for wind and photovoltaic power forecasts.eng
dcterms.accessRightsopen access
dcterms.creatorSchreiber, Jens
dcterms.creatorSick, Bernhard
dc.relation.doidoi:10.3390/en15218062
dc.subject.swdWindenergieger
dc.subject.swdErneuerbare Energienger
dc.subject.swdFotovoltaikger
dc.subject.swdDeep learningger
dc.subject.swdCodierungger
dc.subject.swdWettervorhersageger
dc.subject.swdElektrizitätsversorgungsnetzger
dc.type.versionpublishedVersion
dcterms.source.identifiereissn:1996-1073
dcterms.source.issueIssue 21
dcterms.source.journalEnergieseng
dcterms.source.volumeVolume 15
kup.iskupfalse
dcterms.source.articlenumber8062


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Namensnennung 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Namensnennung 4.0 International