Zur Kurzanzeige

dc.date.accessioned2023-07-24T10:26:10Z
dc.date.available2023-07-24T10:26:10Z
dc.date.issued2022-12-30
dc.identifierdoi:10.17170/kobra-202307198402
dc.identifier.urihttp://hdl.handle.net/123456789/14914
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecthydrogen absorptioneng
dc.subjecthydrogen embrittlementeng
dc.subject22MnB5eng
dc.subjectaluminum-silicon coatingeng
dc.subjectpress hardeningeng
dc.subjecthot formingeng
dc.subject.ddc660
dc.titleHydrogen absorption of ultra-high strength aluminum-silicon coated 22MnB5 steelseng
dc.typeAufsatz
dcterms.abstractThe hot forming process allows to produce safety-relevant structural components in the automotive industry with strengths of 1500 MPa and higher. Generally, high strengths make material sensitive to hydrogen embrittlement. The heat treatment in the hot forming process chain is a potential source of diffusible hydrogen for hot-dipped aluminum-silicon coated boron-manganese steels. In the present work, the influence of different process gases and furnace dwell times during the heat treatment was investigated. Humidified process gases such as synthetic air, nitrogen, oxygen and carbon dioxide were used. The results of the thermal desorption mass spectrometry (TDMS) revealed a more pronounced hydrogen uptake for nitrogen and carbon dioxide gas atmosphere than for synthetic air and oxygen. Furthermore, different material conditions were investigated regarding their sensitivity to hydrogen absorption. The flat-rolled material tends to suffer a higher hydrogen absorption compared to the reference material when using humidified process gases. Materials being pretreated with dry synthetic air point at a relation between the duration time of the pretreatment and the content of absorbed hydrogen.eng
dcterms.accessRightsopen access
dcterms.creatorOstwald, Christoph
dcterms.creatorOpfer, Manuel
dcterms.creatorPopov, Cyril
dcterms.creatorNiendorf, Thomas
dc.relation.doidoi:10.1016/j.jmrt.2022.12.170
dc.subject.swdWasserstoffaufnahmeger
dc.subject.swdWasserstoffversprödungger
dc.subject.swdMangan-Bor-Stahlger
dc.subject.swdBeschichtungger
dc.subject.swdAluminiumlegierungger
dc.subject.swdSiliciumlegierungger
dc.subject.swdFormhärtenger
dc.subject.swdWarmumformenger
dc.type.versionpublishedVersion
dcterms.source.identifiereissn:2214-0697
dcterms.source.journalJournal of Materials Research and Technologyeng
dcterms.source.pageinfo106-113
dcterms.source.volumeVolume 23
kup.iskupfalse


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-NonCommercial-NoDerivatives 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International