Zur Kurzanzeige

dc.date.accessioned2023-07-28T16:28:58Z
dc.date.available2023-07-28T16:28:58Z
dc.date.issued2023-01-14
dc.identifierdoi:10.17170/kobra-202307278514
dc.identifier.urihttp://hdl.handle.net/123456789/14948
dc.description.sponsorshipDeutscher Akademischer Austauschdienst (DAAD). Grant Number: 2017/18 Research Grants - Doctoral Programs in Germany; Deutsches Elektronen-Synchrotron. Grant Number: I-20200093; European Research Council. Grant Number: 949626; Deutsche Forschungsgemeinschaft (DFG)ger
dc.language.isoeng
dc.rightsNamensnennung-Nicht-kommerziell 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectcreepeng
dc.subjectferritic superalloyeng
dc.subjecthigh-temperature materialseng
dc.subjectintermetallicseng
dc.subjecttransmission electron microscopyeng
dc.subject.ddc600
dc.subject.ddc660
dc.titleInfluence of Cu Addition and Microstructural Configuration on the Creep Resistance and Mechanical Properties of an Fe-Based α/α′/α″ Superalloyeng
dc.typeAufsatz
dcterms.abstractIntroducing Cu nanoparticles is an effective mechanism for strengthening and toughening Fe-based materials such as ultra-high-strength steels. Herein, the effect of Cu on the mechanical properties of a novel Fe-based α/α′/α″ superalloy is studied. Compared to a Cu-free reference alloy, nanoindentation reveals an increase in hardness, which was associated with the formation of Cu nanoparticles. Both alloys show room temperature (RT) compressive plastic strain at maximum stress greater than 8%, irrespective of the heat-treatment. At RT and at 750 °C, the Cu-containing alloy exhibits a slightly higher strength, but the heat treatment has a more significant impact: A configuration of α-matrix and intermetallic α′/α″-phases forming an interpenetrating network is superior to a state with isolated precipitates. This difference vanishes in monotonic creep experiments, and under the same conditions, the Cu-containing alloy exhibits a twice as high creep rate despite a slightly higher precipitate fraction. This is linked to a higher lattice misfit and faster-coarsening kinetics. Post-mortem transmission electron microscopy analysis of the creep-deformed specimens identifies dislocation bypass as the dominant deformation mechanism. However, the presence of <010>{110} dislocations in the interfacial networks and evidence of dislocation activity within α′/α″ precipitates suggest the occurrence of shearing events.eng
dcterms.accessRightsopen access
dcterms.creatorMorales Victoria, Luis Ángel
dcterms.creatorBezold, Andreas
dcterms.creatorFörner, Andreas
dcterms.creatorHolz, Hendrik
dcterms.creatorMerle, Benoit
dcterms.creatorNeumeier, Steffen
dcterms.creatorKörner, Carolin
dcterms.creatorZenk, Christopher H.
dc.relation.doidoi:10.1002/adem.202201652
dc.relation.projectidI-20200093, 949626
dc.subject.swdKupferger
dc.subject.swdNanopartikelger
dc.subject.swdSuperlegierungger
dc.subject.swdHochtemperaturger
dc.subject.swdIntermetallische Verbindungenger
dc.subject.swdDurchstrahlungselektronenmikroskopieger
dc.subject.swdMechanische Eigenschaftger
dc.subject.swdKriechenger
dc.type.versionpublishedVersion
dcterms.source.identifiereissn:1527-2648
dcterms.source.issueIssue 9
dcterms.source.journalAdvanced Engineering Materialseng
dcterms.source.volumeVolume 25
kup.iskupfalse
dcterms.source.articlenumber2201652


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Namensnennung-Nicht-kommerziell 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Namensnennung-Nicht-kommerziell 4.0 International