Zur Kurzanzeige

dc.date.accessioned2023-08-02T09:51:30Z
dc.date.available2023-08-02T09:51:30Z
dc.date.issued2023-02-27
dc.identifierdoi:10.17170/kobra-202308018551
dc.identifier.urihttp://hdl.handle.net/123456789/14966
dc.description.sponsorshipThis work was supported by the Austrian Science Fund (FWF) (Project I, No. 4384-N) and the German Research Foundation (DFG) (No. Grant ME-4368/8) within the framework of the D-A-CH cooperation FATIFACE.eng
dc.language.isoeng
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectelectrical properties and parameterseng
dc.subjectelectronic deviceseng
dc.subjectmetallization processeng
dc.subjectcrackseng
dc.subjectelectrical resistivityeng
dc.subjectelectrical conductoreng
dc.subjectscanning electron microscopyeng
dc.subjectfatigue testingeng
dc.subjectthin filmseng
dc.subjectelectron backscatter diffractioneng
dc.subject.ddc620
dc.subject.ddc660
dc.titleDescribing mechanical damage evolution through in situ electrical resistance measurementseng
dc.typeAufsatz
dcterms.abstractThe fatigue properties of metallizations used as electrical conductors in flexible electronic devices have been thoroughly studied over the years. Most studies use time-intensive characterization methods to evaluate mechanical damage. For their ease of access, in situ electrical resistance measurements are often performed along with other characterization methods. However, the data are mostly used as an indicator of failure and a thorough analysis is usually missing. This work presents some deeper analysis methods of such datasets, using gold films on polyimide, with and without a chromium interlayer, revealing that grain growth, through-thickness cracking, and more general fatigue behavior can be determined from electrical resistance data alone. A case is made for increased utilization of such easily obtained data, reducing the time required for the evaluation of experiments.eng
dcterms.accessRightsopen access
dcterms.creatorGebhart, David D.
dcterms.creatorKrapf, Anna
dcterms.creatorMerle, Benoit
dcterms.creatorGammer, Christoph
dcterms.creatorCordill, Megan J.
dc.relation.doidoi:10.1116/6.0002362
dc.relation.projectidI 4384-N, ME-4368/8
dc.subject.swdElektrische Eigenschaftger
dc.subject.swdElektronisches Gerätger
dc.subject.swdMetallisierenger
dc.subject.swdRissger
dc.subject.swdElektrischer Leiterger
dc.subject.swdRasterelektronenmikroskopieger
dc.subject.swdMaterialermüdungger
dc.subject.swdDünne Schichtger
dc.subject.swdElektronenrückstreubeugungger
dc.type.versionpublishedVersion
dcterms.source.identifiereissn:0734-2101
dcterms.source.issueIssue 2
dcterms.source.journalJournal of Vacuum Science & Technology Aeng
dcterms.source.volumeVolume 41
kup.iskupfalse
dcterms.source.articlenumber023408


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Namensnennung 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Namensnennung 4.0 International