Zur Kurzanzeige

dc.date.accessioned2024-05-31T13:49:47Z
dc.date.available2024-05-31T13:49:47Z
dc.date.issued2022
dc.identifierdoi:10.17170/kobra-2024052910239
dc.identifier.urihttp://hdl.handle.net/123456789/15797
dc.description© This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectshape memory alloys (SMAs)eng
dc.subjectagingeng
dc.subjectnanoparticleseng
dc.subjectneutron diffractioneng
dc.subjectmartensite variant selectioneng
dc.subject.ddc600
dc.subject.ddc660
dc.titleEffects of aging on the stress-induced martensitic transformation and cyclic superelastic properties in Co-Ni-Ga shape memory alloy single crystals under compressioneng
dc.typeAufsatz
dcterms.abstractCo-Ni-Ga shape memory alloys attracted scientific attention as promising candidate materials for damping applications at elevated temperatures, owing to excellent superelastic properties featuring a fully reversible stress-strain response up to temperatures as high as 500 °C. In the present work, the effect of aging treatments conducted in a wide range of aging temperatures and times, i.e. at 300–400 °C for 0.25–8.5 h, was investigated. It is shown that critical features of the martensitic transformation are strongly affected by the heat treatments. In particular, the formation of densely dispersed γ’-nanoparticles has a strong influence on the martensite variant selection and the morphology of martensite during stress-induced martensitic transformation. Relatively large, elongated particles promote irreversibility. In contrast, small spheroidal particles are associated with excellent functional stability during cyclic compression loading of 〈001〉-oriented single crystals. In addition to mechanical experiments, a detailed microstructural analysis was performed using in situ optical microscopy and neutron diffraction. Fundamental differences in microstructural evolution between various material states are documented and the relations between thermal treatment, microstructure and functional properties are explored and rationalized.eng
dcterms.accessRightsopen access
dcterms.creatorLauhoff, Christian
dcterms.creatorReul, Alexander
dcterms.creatorLangenkämper, Dennis
dcterms.creatorKrooß, Philipp
dcterms.creatorSomsen, Christoph
dcterms.creatorGutmann, Matthias Josef
dcterms.creatorPedersen, Björn
dcterms.creatorKireeva, Irina V.
dcterms.creatorChumlyakov, Yuriy I.
dcterms.creatorEggeler, Gunter
dcterms.creatorSchmahl, Wolfgang Wilhelm
dcterms.creatorNiendorf, Thomas
dc.relation.doidoi:10.1016/j.actamat.2022.117623
dc.subject.swdMemory-Legierungger
dc.subject.swdDegradation <Technik>ger
dc.subject.swdNanopartikelger
dc.subject.swdNeutronenbeugungger
dc.subject.swdMartensitumwandlungger
dc.subject.swdCobaltlegierungger
dc.subject.swdNickellegierungger
dc.subject.swdGalliumlegierungger
dc.type.versionacceptedVersion
dcterms.source.identifiereissn:1873-2453
dcterms.source.journalActa Materialiaeng
dcterms.source.volumeVolume 226
kup.iskupfalse
dcterms.source.articlenumber117623


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-NonCommercial-NoDerivatives 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International