Zur Kurzanzeige

dc.date.accessioned2024-10-25T08:24:33Z
dc.date.available2024-10-25T08:24:33Z
dc.date.issued2024
dc.identifierdoi:10.17170/kobra-2024102410992
dc.identifier.urihttp://hdl.handle.net/123456789/16112
dc.descriptionAutorenversion; © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.ger
dc.language.isoeng
dc.publisherIEEE
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectwind turbineseng
dc.subjectrenewable energy systemseng
dc.subjectobject regressioneng
dc.subjectgeo-coordinate validationeng
dc.subject.ddc600
dc.titleEnhancing Wind Turbine Location Accuracy: a Deep Learning-Based Object Regression Approach for Validating Wind Turbine Geo-Coordinateseng
dc.typeKonferenzveröffentlichung
dcterms.abstractRemote sensing and deep learning-based methods can be combined to obtain location information automatically on a large scale. This paper introduces an approach for enhancing the geo-coordinate accuracy of existing wind turbines. By employing a RetinaNet-based method for regressive object localization, turbines can be precisely located in images in addition to being identified. Utilizing semi-automatically processed and manually filtered high-resolution image data, a model is trained with an average precision of 96 %. Subsequently, the model is applied to Germany’s MaStR wind turbine dataset. The application illustrates the advantageous implementation of the method and emphasizes its considerable potential for improving the accuracy of geo-coordinates. While 73.72 % of existing coordinates can be confirmed as correct with a deviation of less than 10 meter, for more than 15 % of the turbine locations coordinates between 10 and 100 meters can be corrected, and for 5.6 % locations a deviation of more than 100 meter can be determined. This showcases the real-world application of the proposed methodology and underscores its significant potential for enhancing the quality of geo-coordinates.eng
dcterms.accessRightsopen access
dcterms.creatorKleebauer, Maximilian
dcterms.creatorBraun, Axel
dcterms.creatorHorst, Daniel
dcterms.creatorPape, Carsten
dc.relation.doidoi:10.1109/IGARSS53475.2024.10641018
dc.subject.swdWindturbineger
dc.subject.swdErneuerbare Energienger
dc.subject.swdGeoinformationger
dc.subject.swdDeep learningger
dc.subject.swdFernerkundungger
dc.type.versionacceptedVersion
dcterms.event.date2024-07-07
dcterms.event.placeAthen
dcterms.source.collectionIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. Proceedingseng
dcterms.source.identifiereisbn: 979-8-3503-6032-5
dcterms.source.identifierisbn:979-8-3503-6033-2
dcterms.source.identifierdoi:10.1109/IGARSS53475.2024
dcterms.source.pageinfo7863-7867
kup.iskupfalse
dcterms.eventIGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposiumeng


Dateien zu dieser Ressource

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige