Search
Now showing items 11-20 of 27
Dissertation
On the solutions of holonomic third-order linear irreducible differential equations in terms of hypergeometric functions
(2018-06-06)
Sei k ein algebraisch abgeschlossener Erweiterungskörper von Q der Charakteristik 0 und k(x)[∂] der Ring der Differentialoperatoren mit Koeffizienten in k(x). Sei L ∈ k(x)[∂] ein irreduzibler Differentialoperator dritter Ordung ohne Liouvillesche Lösungen. Sei E = B_^2, 1F_1^2, 0F_2, 1F_2, 2F_2}, wobei B_v eine Besselfunktion ist und pF_q mit p ∈ {0,1,2},q ∈{1,2}, die verallgemeinerte hypergeometrische Funktion. Das Ziel dieser Dissertation ist es, Lösungen von L zu finden, die durch Elemente S ∈ E ausgedrückt werden ...
Dissertation
Computing Quot Schemes
(2017-02-27)
The main goal of this thesis is to develop computational methods which
allow effective computations on Hilbert and Quot schemes.
At first we introduce marked bases over modules. They may be considered as a
form of Gröbner basis which do not depend on a term order. Instead, one
chooses for each generator some term as head module term such that the head
module terms generate a prescribed monomial module. We show that the
involutive normal form algorithm with respect to Pommaret division will
terminate if the ...
Dissertation
Moments of classical orthogonal polynomials
(2013-10-22)
The aim of this work is to find simple formulas for the moments mu_n for all families of classical orthogonal polynomials listed in the book by Koekoek, Lesky and Swarttouw. The generating functions or exponential generating functions for those moments are given.
Dissertation
Elimination in Operator Algebras
(2014-08-08)
A large class of special functions are solutions of systems of linear difference and differential equations with polynomial coefficients. For a given function, these equations considered as operator polynomials generate a left ideal in a noncommutative algebra called Ore algebra. This ideal with finitely many conditions characterizes the function uniquely so that Gröbner basis techniques can be applied.
Many problems related to special functions which can be described by such ideals can be solved by performing ...
Dissertation
Uniformisierbarkeit in Familien von abelschen t-Moduln höheren Ranges
(2011-11-09)
Diese Arbeit beschäftigt sich mit der Frage, wie sich in einer Familie von abelschen t-Moduln die Teilfamilie der uniformisierbaren t-Moduln beschreiben lässt. Abelsche t-Moduln sind höherdimensionale Verallgemeinerungen von Drinfeld-Moduln über algebraischen Funktionenkörpern. Bekanntermaßen lassen sich Drinfeld-Moduln in allgemeiner Charakteristik durch analytische Tori parametrisieren. Diese Tatsache überträgt sich allerdings nur auf manche t-Moduln, die man als uniformisierbar bezeichnet.
Die Situation hat ...
Dissertation
Algorithms for Tamagawa Number Conjectures
(2011-06-09)
In dieser Arbeit werden Algorithmen zur Untersuchung der äquivarianten Tamagawazahlvermutung von Burns und Flach entwickelt. Zunächst werden Algorithmen angegeben mit denen die lokale Fundamentalklasse, die globale Fundamentalklasse und Tates kanonische Klasse berechnet werden können. Dies ermöglicht unter anderem Berechnungen in Brauergruppen von Zahlkörpererweiterungen. Anschließend werden diese Algorithmen auf die Tamagawazahlvermutung angewendet. Die Epsilonkonstantenvermutung kann dadurch für alle Galoiserweiterungen ...
Dissertation
Modellbildung in der algebraischen Kryptoanalyse
(2015-04-22)
In der algebraischen Kryptoanalyse werden moderne Kryptosysteme als polynomielle, nichtlineare Gleichungssysteme dargestellt. Das Lösen solcher Gleichungssysteme ist NP-hart. Es gibt also keinen Algorithmus, der in polynomieller Zeit ein beliebiges nichtlineares Gleichungssystem löst. Dennoch kann man aus modernen Kryptosystemen Gleichungssysteme mit viel Struktur generieren. So sind diese Gleichungssysteme bei geeigneter Modellierung quadratisch und dünn besetzt, damit nicht beliebig. Dafür gibt es spezielle ...
Dissertation
Zur Potentialtheorie des Oseen-Systems
(2017-02-27)
Die aus der Hydrodynamik bekannten dreidimensionalen Gleichungen von Oseen stellen ein mathematisches Modell der Strömung von inkompressiblen Flüssigkeiten und Gasen im stationären Gleichgewicht dar. Sie entstehen bei der Linearisierung des konvektiven Termes u · ∇u um einen von Null verschiedenen konstanten Vektor u = u_∞ = (κ, 0, 0), der die Geschwindigkeit der Strömung im Unendlichen repräsentiert. Man erhält damit aus den stationären nichtlinearen Navier-Stokes-Gleichungen die so genannten Oseen-Gleichungen in ...
Dissertation
On Connection, Linearization and Duplication Coefficients of Classical Orthogonal Polynomials
(2014-07-16)
In this work, we have mainly achieved the following:
1. we provide a review of the main methods used for the computation of the connection
and linearization coefficients between orthogonal polynomials of a continuous variable, moreover using a new approach, the duplication problem of these polynomial
families is solved;
2. we review the main methods used for the computation of the connection and linearization coefficients of orthogonal polynomials of a discrete variable, we solve the duplication and linearization ...