Search
Now showing items 21-28 of 28
Dissertation
Analytical Study of Light Propagation in Highly Nonlinear Media
(2009-08-17)
The present dissertation is devoted to the construction of exact and approximate analytical solutions of the problem of light propagation in highly nonlinear media. It is demonstrated that for many experimental conditions, the problem can be studied under the geometrical optics approximation with a sufficient accuracy. Based on the renormalization group symmetry analysis, exact analytical solutions of the eikonal equations with a higher order refractive index are constructed. A new analytical approach to the construction ...
Dissertation
Relativistic LCAO with Minimax Principle and New Balanced Basis Sets
(2011-01-13)
Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection ...
Dissertation
Ab initio Molecular Dynamics Simulations of the Structural Response of Solids to Ultrashort Laser and XUV Pulses
(2015-04-10)
The theoretical model and underlying physics described in this thesis are about the interaction of femtosecond-laser and XUV pulses with solids. The key to understand the basics of such interaction is to study the structural response of the materials after laser interaction. Depending on the laser characteristics, laser-solid interaction can result in a wide range of structural responses such as solid-solid phase transitions, vacuum phonon squeezing, ultrafast melting, generation of coherent phonons, etc. During my ...
Aufsatz
Slave-boson approach to the size-dependent transition from van der Waals to covalent bonding in Hg_n clusters
(1994)
We use a microscopic theory to describe the dynamics of the valence electrons in divalent-metal clusters. The theory is based on a many-body model Harniltonian H which takes into account, on the same electronic level, the van der Waals and the covalent bonding. In order to study the ground-state properties of H we have developed an extended slave-boson method. We have studied the bonding character and the degree of electronic delocalization in Hg_n clusters as a function of cluster size. Results show that, for ...
Aufsatz
Theory for the change of bond character in divalent-metal clusters
(1991)
To determine the size dependence of the bonding in divalent-metal clusters we use a many-electron Hamiltonian describing the interplay between van der Waals (vdW) and covalent interactions. Using a saddle-point slave-boson method and taking into account the size-dependent screening of charge fluctuations, we obtain for Hg_n a sharp transition from vdW to covalent bonding for increasing n. We show also, by solving the model Hamiltonian exactly, that for divalent metals vdW and covalent bonding coexist already in the dimers.
Aufsatz
Unrestricted hartree-fock calculation of the ionization potential of small Hg_n clusters
(1993)
The ionization potential of small Hg_n clusters has been calculated. For the first time good agreement with experimental results has been obtained. It is shown that interatomic Coulomb interactions are important. The energy of Hg_n^+ is calculated using the unrestricted inhomogeneous Hartree-Fock approximation. As a consequence of a change in the charge distribution in Hg_n^+ , we obtain an abrupt change in the slope of the ionization potential at the critical cluster size n_cr ~ 14. The presented results are expected ...
Aufsatz
Calculation of the electronic properties of neutral and ionized divalent-metal clusters
(1993)
The electronic properties of neutral and ionized divalent-metal clusters have been studied using a microscopic theory, which takes into account the interplay between van der Waals (vdW) and covalent bonding in the neutral clusters, and the competition between hole delocalization and polarization energy in the ionized clusters. By calculating the ground-state energies of neutral and ionized. Hg_n clusters, we determine the size dependence of the bond character and the ionization potential I_p(n). For neutral Hg_n ...
Aufsatz
On the transition from localized to delocalized electronic states in divalent-metal clusters
(1991)
The transition from van der Waals to covalent bonding, which is expected to occur in divalent-metal clusters with increasing cluster size, is discussed. We propose a model which takes into account, within the same electronic theory, the three main competing contributions, namely the kinetic energy of the electrons, the Coulomb interactions between electrons, and the s \gdw p intraatomic transitions responsible for van der Waals like bonding. The model is solved by taking into account electron correlations using a ...