Search
Now showing items 1-9 of 9
Habilitation
Twin Basic Quantum Calculus and its Applications
(2024)
We give in this work some results on twin basic quantum calculus. The (p,q)-derivative, the (p,q)-integral and some (p,q)-Taylor formula are discussed. Next, we introduce and provide several results about (p,q)-Gamma and (p,q)-Beta functions. Some (p,q)-Sturm Liouville problems are introduced and some (p,q)-hypergeometric solutions are obtained. The work ends with the introduction (p,q)-Appell polynomials and some (p,q)-Laplace transforms.
Dissertation
Job-shop scheduling with flexible energy prices and time windows: A branch-and-price-and-cut approach
(2024)
Energy-aware scheduling is crucial in the current economy and green production initiatives. However, with the rise of renewable energy sources, power production is subject to uncertain weather conditions. Hence, within a network, some balancing group managers must maintain a balance between production and demand, which requires precise energy orders for specific times. Therefore, those managers must prioritize accurate energy orders to manage this complex problem.
The primary aim of this thesis is to manage one ...
Dissertation
Generalized Involutive Bases and Their Induced Free Resolutions
(2022-05)
In this thesis, we generalize several types of involutive and marked bases for ideals in quotient rings of commutative polynomial rings. We apply these new types of bases to the analysis of infinite free resolutions and of Hilbert schemes defined over certain types of quotient rings. We are mostly concerned with Pommaret and Janet bases; the marked bases we consider are marked over monomial submodules that are quasi-stable, i.e., that possess finite Pommaret bases.
Involutive bases of the types we consider induce ...
Dissertation
Generation Human Body Motion by the Centralized Networks
(2023)
The main goal of the thesis is to describe and study reduced models for efficient simulations of human body motions (HBM). To this end, we propose new coupled oscillator models, which are networks of dynamically coupled elements. These networks consist of a few of centers and many satellites. The centers evolve in time as periodical oscillators with different frequencies. The satellite states are defined via center states by a radial basis function (RBF) networks. To simulate different motions we adjust the parameter ...
Dissertation
Symmetrien von Differentialgleichungen via Vessiot-Theorie
(2021-04)
Die übliche Definition des Symmetriebegriffs einer Differentialgleichung lautet wie folgt: Symmetrien sind Transformationen, die Lösungen wieder in Lösungen überführen. Modelliert man Differentialgleichungen als Untermannigfaltigkeiten eines Jetbündels, so lassen sich zwei Arten von Symmetrien unterscheiden: innere und äußere. Der erste Fall entspricht einer Transformation, die ausschließlich auf der Differentialgleichung definiert ist. Im zweiten Fall ist die betrachtete Transformation auf dem gesamten umgebenden ...
Dissertation
Algorithmic Reduction of Biochemical Reaction Networks
(2022-02-25)
The dynamics of species concentrations of chemical reaction networks are given by autonomous first-order ordinary differential equations. Singular perturbation methods allow the computation of approximate reduced systems that make explicit several time scales with corresponding invariant manifolds. This thesis presents:
1. An algorithmic approach for the computation of such reductions on solid analytical grounds. Required scalings are derived using tropical geometry. The existence of invariant manifolds is subject ...
Dissertation
Explicit Description Of Isogeny And Isomorphism Classes Of Drinfeld Modules Of Higher Rank Over Finite Fields
(2020)
When jumping from the number fields theory to the function fields theory, one cannot miss the deep analogy between rank 1 Drinfeld modules and the group of root of unity and the analogy between rank 2 Drinfeld modules and elliptic curves. But so far, there is no known structure in number fields theory that is analogous to the Drinfeld modules of higher rank r ≥ 3. In this thesis we investigate the classes of those Drinfeld modules of higher rank r ≥ 3 defined over a finite field L. We describe explicitly the Weil ...
Lehrmaterial
Skriptum zur Linearen Algebra und Analytischen Geometrie
(2020-07)
Vorlesungsskript zur Vorlesung „Lineare Algebra und Analytische Geometrie“ an der Universität Kassel im Sommersemester 2020. Es handelt sich um die Druckversion.
Dissertation
Power Series Representations of Hypergeometric Type and Non-Holonomic Functions in Computer Algebra
(2020-06-10)
A Laurent-Puiseux series
$$ \sum\limits_{n = n_0}^{\infty }{a_n (z - z_0)^{n/k} (a_n \in K, k \in ℕ, n_0 \in ℤ ) } \quad (1) $$
where $ k $ denotes the corresponding Puiseux number and $ K $ an infinite computable field - mostly $ K= ℚ(α_1,\ldots,α_n) $ : a field of rational functions in several variables, is mainly characterized by the general coefficient. We consider the case where an is a term of an m-fold hypergeometric sequence.
That is $ a_{n+m} = r(n) a_n $ for all sufficiently large integers $ n, r(n) $ ...