Aufsatz
Artikel (Publikationen im Open Access gefördert durch die UB)
Hybrid optimization schemes for quantum control
Abstract
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.
Citation
In: EPJ quantum technology. - Berlin ; Heidelberg [u.a.] : Springer Open, 2015, 2, 21, 1-16Sponsorship
Gefördert durch den Publikationsfonds der Universität KasselCollections
Publikationen (Theoretische Physik III - Quantendynamik und -kontrolle)Artikel (Publikationen im Open Access gefördert durch die UB)
Citation
@article{urn:nbn:de:hebis:34-2016011949686,
author={Goerz, Michael H. and Whaley, K. Birgitta and Koch, Christiane P.},
title={Hybrid optimization schemes for quantum control},
journal={EPJ quantum technology},
year={2015}
}
0500 Oax 0501 Text $btxt$2rdacontent 0502 Computermedien $bc$2rdacarrier 1100 2015$n2015 1500 1/eng 2050 ##0##urn:nbn:de:hebis:34-2016011949686 3000 Goerz, Michael H. 3010 Whaley, K. Birgitta 3010 Koch, Christiane P. 4000 Hybrid optimization schemes for quantum control / Goerz, Michael H. 4030 4060 Online-Ressource 4085 ##0##=u http://nbn-resolving.de/urn:nbn:de:hebis:34-2016011949686=x R 4204 \$dAufsatz 4170 7136 ##0##urn:nbn:de:hebis:34-2016011949686
2016-01-19T07:51:54Z 2016-01-19T07:51:54Z 2015 2015 2196-0763 urn:nbn:de:hebis:34-2016011949686 http://hdl.handle.net/123456789/2016011949686 Gefördert durch den Publikationsfonds der Universität Kassel eng Springer Open Urheberrechtlich geschützt https://rightsstatements.org/page/InC/1.0/ 530 Hybrid optimization schemes for quantum control Aufsatz Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone. open access In: EPJ quantum technology. - Berlin ; Heidelberg [u.a.] : Springer Open, 2015, 2, 21, 1-16 Goerz, Michael H. Whaley, K. Birgitta Koch, Christiane P. Berlin; Heidelberg [u.a.] doi:10.1140/epjqt/s40507-015-0034-0 21 EPJ quantum technology S. 1-16 2
The following license files are associated with this item:
Urheberrechtlich geschützt