Artificial intelligence for online characterization of ultrashort X-ray free-electron laser pulses
dc.date.accessioned | 2023-04-28T14:38:02Z | |
dc.date.available | 2023-04-28T14:38:02Z | |
dc.date.issued | 2022-10-24 | |
dc.description.sponsorship | Gefördert durch den Publikationsfonds der Universität Kassel | ger |
dc.identifier | doi:10.17170/kobra-202304287915 | |
dc.identifier.uri | http://hdl.handle.net/123456789/14640 | |
dc.language.iso | eng | |
dc.relation.doi | doi:10.1038/s41598-022-21646-x | |
dc.rights | Namensnennung 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Applied physics | eng |
dc.subject | Characterization and analytical techniques | eng |
dc.subject | Computer science | eng |
dc.subject | Statistics | eng |
dc.subject.ddc | 530 | |
dc.subject.swd | Angewandte Physik | ger |
dc.subject.swd | Röntgenlaser | ger |
dc.subject.swd | Ultrakurzzeitlaser | ger |
dc.subject.swd | Künstliche Intelligenz | ger |
dc.title | Artificial intelligence for online characterization of ultrashort X-ray free-electron laser pulses | eng |
dc.type | Aufsatz | |
dc.type.version | publishedVersion | |
dcterms.abstract | X-ray free-electron lasers (XFELs) as the world’s brightest light sources provide ultrashort X-ray pulses with a duration typically in the order of femtoseconds. Recently, they have approached and entered the attosecond regime, which holds new promises for single-molecule imaging and studying nonlinear and ultrafast phenomena such as localized electron dynamics. The technological evolution of XFELs toward well-controllable light sources for precise metrology of ultrafast processes has been, however, hampered by the diagnostic capabilities for characterizing X-ray pulses at the attosecond frontier. In this regard, the spectroscopic technique of photoelectron angular streaking has successfully proven how to non-destructively retrieve the exact time–energy structure of XFEL pulses on a single-shot basis. By using artificial intelligence techniques, in particular convolutional neural networks, we here show how this technique can be leveraged from its proof-of-principle stage toward routine diagnostics even at high-repetition-rate XFELs, thus enhancing and refining their scientific accessibility in all related disciplines. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Dingel, Kristina | |
dcterms.creator | Otto, Thorsten | |
dcterms.creator | Marder, Lutz | |
dcterms.creator | Funke, Lars | |
dcterms.creator | Held, Arne | |
dcterms.creator | Savio, Sara | |
dcterms.creator | Hans, Andreas | |
dcterms.creator | Hartmann, Gregor | |
dcterms.creator | Meier, David | |
dcterms.creator | Viefhaus, Jens | |
dcterms.creator | Sick, Bernhard | |
dcterms.creator | Ehresmann, Arno | |
dcterms.creator | Ilchen, Markus | |
dcterms.creator | Helml, Wolfram | |
dcterms.extent | 14 Seiten | |
dcterms.source.articlenumber | 17809 | |
dcterms.source.identifier | eissn:2045-2322 | |
dcterms.source.journal | Scientific Reports | eng |
dcterms.source.volume | Volume 12 | |
kup.iskup | false |