Applying Least Absolute Shrinkage Selection Operator and Akaike Information Criterion Analysis to Find the Best Multiple Linear Regression Models between Climate Indices and Components of Cow’s Milk

dc.date.accessioned2016-11-09T13:04:47Z
dc.date.available2016-11-09T13:04:47Z
dc.date.issued2016-07-23
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kassel
dc.identifier.issn2304-8158
dc.identifier.uriurn:nbn:de:hebis:34-2016110951358
dc.identifier.urihttp://hdl.handle.net/123456789/2016110951358
dc.language.isoeng
dc.publisherMDPI
dc.publisher.placeBasel
dc.relation.doidoi:10.3390/foods5030052
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectAICeng
dc.subjectLASSOeng
dc.subjectclimate indiceseng
dc.subjectESIeng
dc.subjectETIeng
dc.subjectHLIeng
dc.subjectRRPeng
dc.subjectTHIeng
dc.subjectlinear regression modeleng
dc.subjectmilk componentseng
dc.subject.ddc630
dc.titleApplying Least Absolute Shrinkage Selection Operator and Akaike Information Criterion Analysis to Find the Best Multiple Linear Regression Models between Climate Indices and Components of Cow’s Milkeng
dc.typeAufsatz
dcterms.abstractThis study focuses on multiple linear regression models relating six climate indices (temperature humidity THI, environmental stress ESI, equivalent temperature index ETI, heat load HLI, modified HLI (HLI new), and respiratory rate predictor RRP) with three main components of cow’s milk (yield, fat, and protein) for cows in Iran. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Uncertainty estimation is employed by applying bootstrapping through resampling. Cross validation is used to avoid over-fitting. Climatic parameters are calculated from the NASA-MERRA global atmospheric reanalysis. Milk data for the months from April to September, 2002 to 2010 are used. The best linear regression models are found in spring between milk yield as the predictand and THI, ESI, ETI, HLI, and RRP as predictors with p-value < 0.001 and R2 (0.50, 0.49) respectively. In summer, milk yield with independent variables of THI, ETI, and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. This method is suggested for the impact studies of climate variability/change on agriculture and food science fields when short-time series or data with large uncertainty are available.eng
dcterms.accessRightsopen access
dcterms.bibliographicCitationIn: Foods. - Basel : MDPI. - 2016, 5(3), 52
dcterms.creatorMarami Milani, Mohammad Reza
dcterms.creatorHense, Andreas
dcterms.creatorRahmani, Elham
dcterms.creatorPloeger, Angelika
dcterms.source.issue52
dcterms.source.journalFoods
dcterms.source.pageinfoS. 1-17
dcterms.source.volume5

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
foods_05_00052.pdf
Size:
3.71 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.23 KB
Format:
Item-specific license agreed upon to submission
Description: