UVC Irradiation as a Surface Treatment of Polycarbonate to Generate Adhesion to Liquid Silicone Rubber in an Overmolding Process

dc.date.accessioned2024-04-30T15:42:36Z
dc.date.available2024-04-30T15:42:36Z
dc.date.issued2024-04-18
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.identifierdoi:10.17170/kobra-2024042510086
dc.identifier.urihttp://hdl.handle.net/123456789/15739
dc.language.isoger
dc.relation.doidoi:10.3390/polym16081141
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectadhesioneng
dc.subjectovermoldingeng
dc.subjectliquid silicone rubbereng
dc.subjectpolycarbonateeng
dc.subject.ddc600
dc.subject.ddc660
dc.subject.swdAdhäsionger
dc.subject.swdSpritzgießenger
dc.subject.swdSiliconkautschukger
dc.subject.swdFlüssigkautschukger
dc.subject.swdPolycarbonateger
dc.subject.swdOberflächenbehandlungger
dc.subject.swdUltraviolett Cger
dc.titleUVC Irradiation as a Surface Treatment of Polycarbonate to Generate Adhesion to Liquid Silicone Rubber in an Overmolding Processeng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractThis study investigates the adhesion properties of polycarbonate (PC) and liquid silicone rubbers (LSR) through surface activation using ultraviolet C (UVC) radiation. While self-adhesive LSRs adhere easily to certain thermoplastic composites such as polybutylene terephthalate (PBT) and polyamides (PAs), bonding to PC typically requires surface treatment due to the lack of compatible functional groups. Previous methods like plasma or flame treatment have been effective, but the use of UVC radiation for surface activation remains unexplored. Through experiments, it was found that UVC surface activation, particularly with ozone-generating lamps, significantly enhances the peel strength between PC and self-adhesive LSRs. The study evaluates the impact of different irradiation times and lamp configurations on peel resistance, surface energy, and composite stability. Results show that UVC/ozone (wavelengths 254 nm and 185 nm) activation increases peel resistance, with distinct differences observed between LSR types. Additionally, the study examines the stability of UVC activation over time and under various storage conditions, highlighting its effectiveness for up to 36 months at room temperature. Furthermore, the relationship between surface energy and peel strength is analyzed, finding that UVC/ozone activation increases surface energy but does not consistently correlate with improved adhesion. The study concludes with a comparison of UVC/ozone activation to alternative surface treatment methods, emphasizing its advantages such as cost-effectiveness and stability while considering limitations regarding substrate compatibility and occupational safety aspects. Overall, UVC/ozone surface activation presents a promising approach for enhancing adhesion in PC–LSR composite systems and holds potential for applications across various industries.eng
dcterms.accessRightsopen access
dcterms.creatorHartung, Michael
dcterms.creatorHeim, Hans-Peter
dcterms.source.articlenumber1141
dcterms.source.identifiereissn:2073-4360
dcterms.source.issueIssue 8
dcterms.source.journalPolymerseng
dcterms.source.volumeVolume 16
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
polymers_16_01141_1.pdf
Size:
4.45 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description: