On Non-linear Characterizations of Classical Orthogonal Polynomials

dc.date.accessioned2023-01-19T14:52:59Z
dc.date.available2023-01-19T14:52:59Z
dc.date.issued2022-12-03
dc.description.sponsorshipGefördert im Rahmen des Projekts DEAL
dc.identifierdoi:10.17170/kobra-202301197410
dc.identifier.urihttp://hdl.handle.net/123456789/14377
dc.language.isoeng
dc.relation.doidoi:10.1007/s00009-022-02207-y
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectClassical orthogonal polynomials on non-uniform latticeseng
dc.subjectdifference equationeng
dc.subjectdivided-difference equationeng
dc.subjectthree-term recurrence relationeng
dc.subject.ddc510
dc.subject.swdOrthogonale Polynomeger
dc.subject.swdDifferentialgleichungger
dc.subject.swdRiccati-Differentialgleichungger
dc.subject.swdRodrigues-Formelger
dc.titleOn Non-linear Characterizations of Classical Orthogonal Polynomialseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractClassical orthogonal polynomials are known to satisfy seven equivalent properties, namely the Pearson equation for the linear functional, the second-order differential/difference/q-differential/ divided-difference equation, the orthogonality of the derivatives, the Rodrigues formula, two types of structure relations, and the Riccati equation for the formal Stieltjes function. In this work, following previous work by Kil et al., we state and prove a non-linear characterization result for classical orthogonal polynomials on non-uniform lattices. Next, we give explicit relations for some families of these classes.eng
dcterms.accessRightsopen access
dcterms.creatorNjionou Sadjang, Patrick
dcterms.creatorKalda Sawalda, D.
dcterms.creatorMboutngam, Salifou
dcterms.creatorFoupouagnigni‬, Mama
dcterms.creatorKoepf, Wolfram
dcterms.source.articlenumber10
dcterms.source.identifiereissn:1660-5454
dcterms.source.issueissue 1
dcterms.source.journalMediterranean Journal of Mathematics (MedJM)eng
dcterms.source.volumeVolume 20
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s00009_022_02207_y.pdf
Size:
470.85 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections