Divisibility of Trinomials by Irreducible Polynomials over F_2
dc.date.accessioned | 2008-09-16T07:59:06Z | |
dc.date.available | 2008-09-16T07:59:06Z | |
dc.date.issued | 2008 | |
dc.format.extent | 47036 bytes | |
dc.format.extent | 101226 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | urn:nbn:de:hebis:34-2008091623844 | |
dc.identifier.uri | http://hdl.handle.net/123456789/2008091623844 | |
dc.language.iso | eng | |
dc.rights | Urheberrechtlich geschützt | |
dc.rights.uri | https://rightsstatements.org/page/InC/1.0/ | |
dc.subject | Trinomial | eng |
dc.subject | Self-reciprocal polynomial | eng |
dc.subject | Finite field | eng |
dc.subject.ddc | 510 | |
dc.subject.msc | 11T06 | eng |
dc.subject.msc | 12E05 | eng |
dc.subject.msc | 12E20 | eng |
dc.subject.msc | 13A05 | eng |
dc.title | Divisibility of Trinomials by Irreducible Polynomials over F_2 | eng |
dc.type | Preprint | |
dcterms.abstract | Irreducible trinomials of given degree n over F_2 do not always exist and in the cases that there is no irreducible trinomial of degree n it may be effective to use trinomials with an irreducible factor of degree n. In this paper we consider some conditions under which irreducible polynomials divide trinomials over F_2. A condition for divisibility of self-reciprocal trinomials by irreducible polynomials over F_2 is established. And we extend Welch's criterion for testing if an irreducible polynomial divides trinomials x^m + x^s + 1 to the trinomials x^am + x^bs + 1. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Kim, Ryul | |
dcterms.creator | Koepf, Wolfram | |
dcterms.isPartOf | Mathematische Schriften Kassel ;; 08, 07 | ger |
dcterms.source.journal | Mathematische Schriften Kassel | ger |
dcterms.source.volume | 08, 07 |