Divisibility of Trinomials by Irreducible Polynomials over F_2

dc.date.accessioned2008-09-16T07:59:06Z
dc.date.available2008-09-16T07:59:06Z
dc.date.issued2008
dc.format.extent47036 bytes
dc.format.extent101226 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.identifier.uriurn:nbn:de:hebis:34-2008091623844
dc.identifier.urihttp://hdl.handle.net/123456789/2008091623844
dc.language.isoeng
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectTrinomialeng
dc.subjectSelf-reciprocal polynomialeng
dc.subjectFinite fieldeng
dc.subject.ddc510
dc.subject.msc11T06eng
dc.subject.msc12E05eng
dc.subject.msc12E20eng
dc.subject.msc13A05eng
dc.titleDivisibility of Trinomials by Irreducible Polynomials over F_2eng
dc.typePreprint
dcterms.abstractIrreducible trinomials of given degree n over F_2 do not always exist and in the cases that there is no irreducible trinomial of degree n it may be effective to use trinomials with an irreducible factor of degree n. In this paper we consider some conditions under which irreducible polynomials divide trinomials over F_2. A condition for divisibility of self-reciprocal trinomials by irreducible polynomials over F_2 is established. And we extend Welch's criterion for testing if an irreducible polynomial divides trinomials x^m + x^s + 1 to the trinomials x^am + x^bs + 1.eng
dcterms.accessRightsopen access
dcterms.creatorKim, Ryul
dcterms.creatorKoepf, Wolfram
dcterms.isPartOfMathematische Schriften Kassel ;; 08, 07ger
dcterms.source.journalMathematische Schriften Kasselger
dcterms.source.volume08, 07

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
prep0807.pdf
Size:
100.97 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.32 KB
Format:
Item-specific license agreed upon to submission
Description: