On the Computation of Fourier Coefficients
dc.date.accessioned | 2006-11-16T11:00:18Z | |
dc.date.available | 2006-11-16T11:00:18Z | |
dc.date.issued | 2006-11-16T11:00:18Z | |
dc.format.extent | 229838 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | urn:nbn:de:hebis:34-2006111615737 | |
dc.identifier.uri | http://hdl.handle.net/123456789/2006111615737 | |
dc.language.iso | eng | |
dc.rights | Urheberrechtlich geschützt | |
dc.rights.uri | https://rightsstatements.org/page/InC/1.0/ | |
dc.subject | Fourier Series | eng |
dc.subject.ddc | 510 | |
dc.subject.msc | 68W30 | eng |
dc.subject.msc | 33F10 | eng |
dc.subject.swd | Fourier-Reihe | ger |
dc.title | On the Computation of Fourier Coefficients | eng |
dc.type | Preprint | |
dcterms.abstract | In this paper we derive an identity for the Fourier coefficients of a differentiable function f(t) in terms of the Fourier coefficients of its derivative f'(t). This yields an algorithm to compute the Fourier coefficients of f(t) whenever the Fourier coefficients of f'(t) are known, and vice versa. Furthermore this generates an iterative scheme for N times differentiable functions complementing the direct computation of Fourier coefficients via the defining integrals which can be also treated automatically in certain cases. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Koepf, Wolfram | |
dcterms.creator | Nana Chiadjeu, Etienne |