🇬🇧

Lie algebra for rotational subsystems of a driven asymmetric top

We present an analytical approach to construct the Lie algebra of finite-dimensional subsystems of the driven asymmetric top rotor. Each rotational level is degenerate due to the isotropy of space, and the degeneracy increases with rotational excitation. For a given rotational excitation, we determine the nested commutators between drift and drive Hamiltonians using a graph representation. We then generate the Lie algebra for subsystems with arbitrary rotational excitation using an inductive argument.

Sponsor
Gefördert im Rahmen eines Open-Access-Transformationsvertrags mit dem Verlag
Citation
In: Journal of Physics A: Mathematical and Theoretical Volume 55 / Number 21 (2022-05-11) , S. ; eissn:1751-8121
Collections
@article{doi:10.17170/kobra-202205186204,
  author    ={Pozzoli, Eugenio and Leibscher, Monika and Sigalotti, Mario and Boscain, Ugo and Koch, Christine P.},
  title    ={Lie algebra for rotational subsystems of a driven asymmetric top},
  keywords ={510 and Molekülrotation and Steuerbarkeit and Lie-Algebra},
  copyright  ={http://creativecommons.org/licenses/by/4.0/},
  language ={en},
  journal  ={Journal of Physics A: Mathematical and Theoretical},
  year   ={2022-05-11}
}