Predicting Lifetime Suicide Attempts in a Community Sample of Adolescents Using Machine Learning Algorithms

dc.date.accessioned2024-04-05T11:24:05Z
dc.date.available2024-04-05T11:24:05Z
dc.date.issued2023-04-24
dc.description.sponsorshipGefördert im Rahmen eines Open-Access-Transformationsvertrags mit dem Verlagger
dc.identifierdoi:10.17170/kobra-202403149777
dc.identifier.urihttp://hdl.handle.net/123456789/15617
dc.language.isoeng
dc.relation.doidoi:10.1177/10731911231167490
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectsuicide predictioneng
dc.subjectsuicide risk screeningeng
dc.subjectadolescentseng
dc.subjectmachine learningeng
dc.subject.ddc150
dc.subject.ddc360
dc.subject.swdSuizidversuchger
dc.subject.swdPrognoseger
dc.subject.swdJugendger
dc.subject.swdRisikofaktorger
dc.subject.swdMaschinelles Lernenger
dc.titlePredicting Lifetime Suicide Attempts in a Community Sample of Adolescents Using Machine Learning Algorithmseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractSuicide is a major global health concern and a prominent cause of death in adolescents. Previous research on suicide prediction has mainly focused on clinical or adult samples. To prevent suicides at an early stage, however, it is important to screen for risk factors in a community sample of adolescents. We compared the accuracy of logistic regressions, elastic net regressions, and gradient boosting machines in predicting suicide attempts by 17-year-olds in the Millennium Cohort Study (N = 7,347), combining a large set of self- and other-reported variables from different categories. Both machine learning algorithms outperformed logistic regressions and achieved similar balanced accuracies (.76 when using data 3 years before the self-reported lifetime suicide attempts and .85 when using data from the same measurement wave). We identified essential variables that should be considered when screening for suicidal behavior. Finally, we discuss the usefulness of complex machine learning models in suicide prediction.eng
dcterms.accessRightsopen access
dcterms.creatorJankowsky, Kristin
dcterms.creatorSteger, Diana
dcterms.creatorSchroeders, Ulrich
dcterms.source.identifiereissn:1552-3489
dcterms.source.issueIssue 3
dcterms.source.journalAssessmenteng
dcterms.source.pageinfo557-573
dcterms.source.volumeVolume 31
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
jankowsky_et_al_2023_predicting_lifetime_suicide_attempts_in_a_community_sample_of_adolescents_using_machine_learning.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections