Control of Jump Markov Uncertain Linear Systems With General Probability Distributions

dc.date.accessioned2022-06-03T11:18:39Z
dc.date.available2022-06-03T11:18:39Z
dc.date.issued2022-02-25
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.identifierdoi:10.17170/kobra-202205176196
dc.identifier.urihttp://hdl.handle.net/123456789/13892
dc.language.isoengeng
dc.relation.doidoi:10.3389/fcteg.2022.806543
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectjump markov linear systemseng
dc.subjectstochastic systemseng
dc.subjectChebyshev inequalityeng
dc.subjectprobabilistic reachable setseng
dc.subjectkronecker algebraeng
dc.subjectinvariant setseng
dc.subject.ddc510
dc.subject.swdMarkov-Sprungprozessger
dc.subject.swdLineares Systemger
dc.subject.swdStochastisches Systemger
dc.subject.swdČebyšev-Approximationger
dc.subject.swdInvariante Mengeger
dc.titleControl of Jump Markov Uncertain Linear Systems With General Probability Distributionseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractThis paper introduces a method to control a class of jump Markov linear systems with uncertain initialization of the continuous state and affected by disturbances. Both types of uncertainties are modeled as stochastic processes with arbitrarily chosen probability distributions, for which however, the expected values and (co-)variances are known. The paper elaborates on the control task of steering the uncertain system into a target set by use of continuous controls, while chance constraints have to be satisfied for all possible state sequences of the Markov chain. The proposed approach uses a stochastic model predictive control approach on moving finite-time horizons with tailored constraints to achieve the control goal with prescribed confidence. Key steps of the procedure are (i) to over-approximate probabilistic reachable sets by use of the Chebyshev inequality, and (ii) to embed a tightened version of the original constraints into the optimization problem, in order to obtain a control strategy satisfying the specifications. Convergence of the probabilistic reachable sets is attained by suitable bounding of the state covariance matrices for arbitrary Markov chain sequences. The paper presents the main steps of the solution approach, discusses its properties, and illustrates the principle for a numeric example.eng
dcterms.accessRightsopen access
dcterms.creatorFlüs, Patrick
dcterms.creatorStursberg, Olaf
dcterms.source.articlenumber806543
dcterms.source.identifiereissn:2673-6268
dcterms.source.journalFrontiers in Control Engineeringeng
dcterms.source.volumeVolume 3
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
fcteg_03_806543.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections