Mechanical Analysis and Simulation of Wood Textile Composites

dc.date.accessioned2024-06-14T13:14:24Z
dc.date.available2024-06-14T13:14:24Z
dc.date.issued2024-05-18
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.identifierdoi:10.17170/kobra-2024061110315
dc.identifier.urihttp://hdl.handle.net/123456789/15852
dc.language.isoeng
dc.relation.doidoi:10.3390/jcs8050190
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectwood textile compositeseng
dc.subjectnatural fiber compositeseng
dc.subjectsimulationeng
dc.subjectmaterials testingeng
dc.subjectSEMeng
dc.subjectFEAeng
dc.subject.ddc600
dc.subject.ddc620
dc.subject.ddc690
dc.subject.swdHolzger
dc.subject.swdVerbundwerkstoffger
dc.subject.swdTextilverbundstoffger
dc.subject.swdNaturfaserger
dc.subject.swdSimulationger
dc.subject.swdWerkstoffprüfungger
dc.subject.swdRasterelektronenmikroskopieger
dc.subject.swdFinite-Elemente-Methodeger
dc.titleMechanical Analysis and Simulation of Wood Textile Compositesger
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractWood Textile Composites (WTCs) represent a new and innovative class of materials in the field of natural fiber composites. Consisting of fabrics made from willow wood strips (Salix americana) and polypropylene (PP), this material appears to be particularly suitable for structural applications in lightweight construction. Since the threads of the fabric are significantly oversized compared to classic carbon or glass rovings, fundamental knowledge of the mechanical properties of the material is required. The aim of this study was to investigate whether WTCs exhibit classic behavior in terms of fiber composite theory and to classify them in relation to comparable composite materials. It was shown that WTCs meet all the necessary conditions for fiber-reinforced composites in tensile, bending, and compression tests and can be classified as natural-fiber-reinforced polypropylene composites. In addition, it was investigated whether delamination between the fiber and matrix can be simulated by using experimentally determined mechanical data as input. Using finite element analysis (FEA), it was shown that the shear stress components of a stress tensor in the area of the interface between the fiber and matrix are responsible for delamination in the composite material. It was also shown that the resistance to shear stress depends on the geometric conditions of the reinforcing fabric.eng
dcterms.accessRightsopen access
dcterms.creatorvon Boyneburgk, Claudia Louise
dcterms.creatorOikonomou, Dimitri
dcterms.creatorSeim, Werner
dcterms.creatorHeim, Hans-Peter
dcterms.source.articlenumber190
dcterms.source.identifiereissn:2504-477X
dcterms.source.issueIssue 5
dcterms.source.journalJournal of Composites Scienceeng
dcterms.source.volumeVolume 8
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
jcs_08_00190_1.pdf
Size:
24.27 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections