Machine learning parameter systems, Noether normalisations and quasi-stable positions

dc.date.accessioned2024-07-05T09:22:39Z
dc.date.available2024-07-05T09:22:39Z
dc.date.issued2024-06-25
dc.description.sponsorshipGefördert im Rahmen des Projekts DEAL
dc.identifierdoi:10.17170/kobra-2024070510466
dc.identifier.urihttp://hdl.handle.net/123456789/15897
dc.language.isoeng
dc.relation.doidoi:10.1016/j.jsc.2024.102345
dc.relation.issupplementedbydoi:10.5281/zenodo.12114165
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectQuasi-stable idealseng
dc.subjectNoether normalisationeng
dc.subjectSystems of parameterseng
dc.subjectPommaret baseseng
dc.subjectMachine learningeng
dc.subjectMulti-class classificationeng
dc.subject.ddc510
dc.subject.swdMaschinelles Lernenger
dc.subject.swdParameteridentifikationger
dc.subject.swdNoether-Theoremger
dc.titleMachine learning parameter systems, Noether normalisations and quasi-stable positionseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractWe discuss the use of machine learning models for finding “good coordinates” for polynomial ideals. Our main goal is to put ideals into quasi-stable position, as this generic position shares most properties of the generic initial ideal, but can be deterministically reached and verified. Furthermore, it entails a Noether normalisation and provides us with a system of parameters. Traditional approaches use either random choices which typically destroy all sparsity or rather simple human heuristics which are only moderately successful. Our experiments show that machine learning models provide us here with interesting alternatives that most of the time make nearly optimal choices.eng
dcterms.accessRightsopen access
dcterms.creatorHashemi, Amir
dcterms.creatorMirhashemi, Mahshid
dcterms.creatorSeiler, Werner M.
dcterms.source.articlenumberArticle 102345
dcterms.source.identifiereissn:1095-855X
dcterms.source.journalJournal of Symbolic Computationeng
dcterms.source.volumeVolume 126
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1_s2_0_S074771712400049X_main.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections