Data‑driven prediction of the surface layer state in hard‑turning for optimization of component quality

dc.date.accessioned2024-04-12T11:06:22Z
dc.date.available2024-04-12T11:06:22Z
dc.date.issued2024-01-30
dc.description.sponsorshipGefördert im Rahmen des Projekts DEAL
dc.identifierdoi:10.17170/kobra-202404109952
dc.identifier.urihttp://hdl.handle.net/123456789/15656
dc.language.isoeng
dc.relation.doidoi:10.1007/s11740-023-01256-w
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSurface integrityeng
dc.subjectData-driven modelingeng
dc.subjectHard-turningeng
dc.subjectResidual stresseng
dc.subject.ddc620
dc.subject.swdOberflächeger
dc.subject.swdModellierungger
dc.subject.swdIntegritätger
dc.subject.swdStressger
dc.titleData‑driven prediction of the surface layer state in hard‑turning for optimization of component qualityeng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractData-driven approaches are an effective solution for modeling problems in machining. To increase the service life of hardturned components, it is important to quantify the correlation between the cutting parameters such as feed rate, cutting speed and depth of cut and the near-surface properties. For obtaining high-quality models with small data sets, different data-driven approaches are investigated in this contribution. Additionally, models that enable uncertainty quantification are crucial for effective decision-making and the adjustment of cutting parameters. Therefore, parametric multiple polynomial regression and Takagi–Sugeno models, as well as non-parametric Gaussian process regression as a Bayesian approach are considered and compared regarding their capability to predict residual stress and surface roughness values of 51CrV4 specimens after hard-turning. Moreover, a novel method based on optimization of data driven non-linear models is proposed that allows for identification of cutting parameter combinations, which at the same time lead to satisfactory surface roughness and residual stress states.eng
dcterms.accessRightsopen access
dcterms.creatorWittich, Felix
dcterms.creatorWegener, Thomas
dcterms.creatorLiehr, Alexander
dcterms.creatorZinn, Wolfgang
dcterms.creatorNiendorf, Thomas
dcterms.creatorKroll, Andreas
dcterms.source.identifiereissn:1863-7353
dcterms.source.issueIssue 2
dcterms.source.journalProduction Engineeringeng
dcterms.source.pageinfo381 - 392
dcterms.source.volumeVolume 18
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s11740_023_01256_w.pdf
Size:
4.98 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections