On a hybrid approximation concept for self-excited periodic oscillations of large-scale dynamical systems

dc.date.accessioned2022-02-15T17:11:42Z
dc.date.available2022-02-15T17:11:42Z
dc.date.issued2021-12-14
dc.description.sponsorshipGefördert im Rahmen des Projekts DEALger
dc.identifierdoi:10.17170/kobra-202112165264
dc.identifier.urihttp://hdl.handle.net/123456789/13623
dc.language.isoengeng
dc.relation.doidoi:10.1002/pamm.202100143
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.ddc620
dc.subject.swdPeriodische Bewegungger
dc.subject.swdNichtlineares dynamisches Systemger
dc.subject.swdNäherungsverfahrenger
dc.subject.swdFinite-Differenzen-Methodeger
dc.subject.swdHarmonische Balanceger
dc.titleOn a hybrid approximation concept for self-excited periodic oscillations of large-scale dynamical systemseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractWhen approximating periodic solutions in the context of large-scale dynamical systems involving strong local nonlinearities, efficiency is of special interest. Hence, the literature suggests a combination of two approximation methods for increasing the ratio of computational cost to accuracy. Within this contribution, a combination of Finite Difference and Harmonic Balance method is proposed. Due to the usage of Harmonic Balance it is shown, that the resulting equations only depend on the degrees of freedom that are affected by nonlinear forces. As an application, a self-excited limit cycle of a chain of oscillators is approximated and results are compared against numerical time integration to highlight qualitative accuracy.eng
dcterms.accessRightsopen access
dcterms.creatorKappauf, Jonas
dcterms.creatorHetzler, Hartmut
dcterms.source.articlenumbere202100143
dcterms.source.identifiereissn:1617-7061
dcterms.source.issueIssue 1
dcterms.source.journalProceedings in applied mathematics and mechanics (PAMM)eng
dcterms.source.volumeVolume 21
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Proc_Appl_Math_Mech_2021_Kappauf_On_a_hybrid_approximation_concept_for_self_excited_periodic_oscillations_of.pdf
Size:
282.44 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections