Study of Dynamics in Metallic MEMS Cantilevers - Pull-In Voltage and Actuation Speed

dc.date.accessioned2023-02-20T08:47:10Z
dc.date.available2023-02-20T08:47:10Z
dc.date.issued2023-01-13
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.description.sponsorshipThis research was funded by Deutscher Akademischer Austauschdienst (DAAD): DAAD STIBET Degree Completion Support 2022 (using corresponding author’s name but no number); Deutsche Forschungsgemeinschaft (DFG):(grant number: Nos Hi 763/21-1 and Hi 763/19-1); Deutsche Bundesstiftung Umwelt (DBU):(grant number: Nos. AZ23717, AZ20012/189, and AZ35501); and Bundesministerium für Bildung und Forschung (BMBF):(grant number: Nos. 13N14517 and 13N15740).eng
dc.identifierdoi:10.17170/kobra-202302147492
dc.identifier.urihttp://hdl.handle.net/123456789/14428
dc.language.isoengeng
dc.relation.doidoi:10.3390/app13021118
dc.relation.projectidDeutsche Forschungsgemeinschaft (DFG):(grant number: Nos Hi 763/21-1 and Hi 763/19-1); Deutsche Bundesstiftung Umwelt (DBU):(grant number: Nos. AZ23717, AZ20012/189, and AZ35501); and Bundesministerium für Bildung und Forschung (BMBF):(grant number: Nos. 13N14517 and 13N15740)ger
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMEMS cantilevereng
dc.subjectpull-in voltageeng
dc.subjectactuation speedeng
dc.subjectnon-linearityeng
dc.subjectdynamicseng
dc.subjectmetallic material systemseng
dc.subject.ddc620
dc.subject.ddc660
dc.subject.swdMEMSger
dc.subject.swdElektrische Spannungger
dc.subject.swdGeschwindigkeitger
dc.subject.swdNichtlineares Phänomenger
dc.subject.swdDynamikger
dc.subject.swdMetallischer Werkstoffger
dc.titleStudy of Dynamics in Metallic MEMS Cantilevers - Pull-In Voltage and Actuation Speedeng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractFor different metals and varying geometries, this paper presents simulations of electrostatically actuated MEMS cantilevers regarding their influence on pull-in voltage and actuation speed. Three-dimensional electromechanical modeling including many non-linearities has been performed to study some static but mainly dynamic features. The results show that the involved parameters have different influences on the actuation speed and pull-in voltage: lower length, higher thickness as well as lower density and higher Young’s modulus of material diminish the actuation time, while longer length, smaller thickness, and smaller Young’s modulus reduce the actuation voltages. Shorter actuation times and smaller actuation voltages cannot be obtained and optimized simultaneously. Different metals such as Au, Ag, Cu, Ti, Ni, Al, W, Cr, Ta, and Mo as well as artificial metals are studied and compared. In this study, Al is found to be the best material for achieving shorter actuation times and smaller actuation voltages. The design rules of MEMS cantilevers are derived considering the large variety of studied parameters. Many involved non-linearities are discussed in detail influencing the MEMS dynamics. Finally, the actuation times are related to the existing experimental actuation times of optical MEMS shutters and MEMS cantilevers.eng
dcterms.accessRightsopen access
dcterms.creatorYang, Xiaohui
dcterms.creatorKästner, Philipp
dcterms.creatorKäkel, Eireen
dcterms.creatorSmolarczyk, Marek
dcterms.creatorLiu, Shujie
dcterms.creatorLi, Qingdang
dcterms.creatorHillmer, Hartmut
dcterms.source.articlenumber1118
dcterms.source.identifiereissn:2076-3417
dcterms.source.issueIssue 2
dcterms.source.journalApplied Scienceeng
dcterms.source.volumeVolume 13
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
applsci_13_01118_v2.pdf
Size:
6.01 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections