Grain growth and precipitation behaviour of AISI 430 ferritic stainless steel subjected to pulsed laser beam welding using free-form pulse shaping

dc.date.accessioned2023-01-27T15:40:44Z
dc.date.available2023-01-27T15:40:44Z
dc.date.issued2022-10-26
dc.description.sponsorshipGefördert im Rahmen des Projekts DEALger
dc.identifierdoi:10.17170/kobra-202301267424
dc.identifier.urihttp://hdl.handle.net/123456789/14390
dc.language.isoengeng
dc.relation.doidoi:10.1007/s40194-022-01398-y
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectferritic stainless steeleng
dc.subjectpulsed laser beam weldingeng
dc.subjectintergranular corrosioneng
dc.subjectgrain coarseningeng
dc.subjectgrain refinementeng
dc.subjectprecipitation kineticseng
dc.subject.ddc600
dc.subject.swdFerritischer Stahlger
dc.subject.swdEdelstahlger
dc.subject.swdLaserschweißenger
dc.subject.swdImpulslaserger
dc.subject.swdInterkristalline Korrosionger
dc.subject.swdKornwachstumger
dc.subject.swdKornfeinungger
dc.subject.swdAusscheidungger
dc.titleGrain growth and precipitation behaviour of AISI 430 ferritic stainless steel subjected to pulsed laser beam welding using free-form pulse shapingeng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractFerritic stainless steels are prone to grain coarsening and precipitation of chromium-rich grain boundary phases during fusion welding, which increase intergranular corrosion susceptibility. State-of-the-art techniques to overcome these challenges mainly feature heterogeneous nucleating agents with regard to grain coarsening or alternating alloy concepts as well as post-weld heat treatments as for restoration of intergranular corrosion resistance. The present investigation seeks to depart from these traditional approaches through the use of a tailored heat input during pulsed laser beam welding by means of free-form pulse shaping. Grain size analysis using electron backscatter diffraction shows a substantial reduction of grain size as compared to continuous-wave lasers due to a distinctive columnar to equiaxed transition. Moreover, phase analyses reveal the overcoming of chromium carbide precipitation within the heat-affected zone. As corrosion tests demonstrate, intergranular attack is therefore concentrated on the weld metal. In comparison to continuous-wave laser beam welding, intergranular corrosion susceptibility is substantially reduced for very short pulse durations. From these results, it can be derived that pulsed laser beam welding using free-form pulse shaping enables direct control of heat input and, thus, tailored grain growth and precipitation formation properties.eng
dcterms.accessRightsopen access
dcterms.creatorSommer, Niklas
dcterms.creatorStredak, Florian
dcterms.creatorWiegand, Michael
dcterms.creatorBöhm, Stefan
dcterms.source.identifiereissn:1878-6669
dcterms.source.issueIssue 1
dcterms.source.journalWelding in the Worldeng
dcterms.source.pageinfo51-62
dcterms.source.volumeVolume 67
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s40194_022_01398_y.pdf
Size:
9.65 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections