Sonication-assisted liquid exfoliation and size-dependent properties of magnetic two-dimensional α-RuCl₃

dc.date.accessioned2023-08-30T09:22:55Z
dc.date.available2023-08-30T09:22:55Z
dc.date.issued2023-04-26
dc.description.sponsorshipGefördert im Rahmen des Projekts DEAL
dc.identifierdoi:10.17170/kobra-202308288701
dc.identifier.urihttp://hdl.handle.net/123456789/15039
dc.language.isoeng
dc.relation.doidoi:10.1088/1361-6463/accc3e
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectliquid phase exfoliationeng
dc.subjectRuCl₃eng
dc.subject2D materialeng
dc.subjectsize selectioneng
dc.subjectnanomaterial stabilityeng
dc.subject.ddc530
dc.subject.swdZweidimensionales Materialger
dc.subject.swdFlüssiger Zustandger
dc.subject.swdNanostrukturiertes Materialger
dc.subject.swdRutheniumger
dc.titleSonication-assisted liquid exfoliation and size-dependent properties of magnetic two-dimensional α-RuCl₃eng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractOriginating from the hexagonal arrangement of magnetic ions in the presence of strong spin orbit coupling, α-RuCl₃ is considered as model system for the Kitaev-Heisenberg model. While the magnetic properties of α-RuCl₃ have been studied in bulk single crystals or micromechanically-exfoliated nanosheets, little is known about the nanosheets' properties after exfoliation by techniques suitable for mass production such as liquid phase exfoliation (LPE). Here, we demonstrate sonication-assisted LPE on α-RuCl₃ single crystals in an inert atmosphere. Coupled with centrifugation-based size selection techniques, the accessible size- and thickness range is quantified by statistical atomic force microscopy. Individual nanosheets obtained after centrifugation-based size selection are subjected to transmission electron microscopy to confirm their structural integrity after the exfoliation. The results are combined with bulk characterisation methods, including Raman and x-ray photoelectron spectroscopy, and powder diffraction experiments to evaluate the structural integrity of the nanosheets. We report changes of the magnetic properties of the nanomaterial with nanosheet size, as well as photospectroscopic metrics for the material concentration and average layer number. Finally, a quantitative analysis on environmental effects on the nanomaterial integrity is performed based on time and temperature dependent absorbance spectroscopy revealing a relatively slow decay (half-life of ∼2000 h at 20 °C), albeit with low activation energies of 6–20 kJ mol-¹.eng
dcterms.accessRightsopen access
dcterms.creatorSynnatschke, Kevin
dcterms.creatorJonak, Martin
dcterms.creatorStorm, Alexander
dcterms.creatorLaha, Sourav
dcterms.creatorKöster, Janis
dcterms.creatorPetry, Julian
dcterms.creatorOtt, Steffen
dcterms.creatorSzydłowska, Beata
dcterms.creatorDüsberg, Georg S.
dcterms.creatorKaiser, Ute
dcterms.creatorKlingeler, Rüdiger
dcterms.creatorLotsch, Bettina Valeska
dcterms.creatorBackes, Claudia
dcterms.extent12 Seiten
dcterms.source.articlenumber274001
dcterms.source.identifiereissn:1361-6463
dcterms.source.issueNumber 27
dcterms.source.journalJournal of Physics D: Applied Physics
dcterms.source.volumeVolume 56
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Synnatschke_2023_J._Phys._D _Appl._Phys._56_274001.pdf
Size:
6.83 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections