Parity of the Number of Irreducible Factors for Composite Polynomials

dc.date.accessioned2008-08-07T09:38:22Z
dc.date.available2008-08-07T09:38:22Z
dc.date.issued2008
dc.format.extent137304 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.uriurn:nbn:de:hebis:34-2008080723156
dc.identifier.urihttp://hdl.handle.net/123456789/2008080723156
dc.language.isoeng
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectDiscriminanteng
dc.subjectSwan’s theoremeng
dc.subjectCompositioneng
dc.subjectFinite fieldeng
dc.subject.ddc510
dc.titleParity of the Number of Irreducible Factors for Composite Polynomialseng
dc.typePreprint
dcterms.abstractVarious results on parity of the number of irreducible factors of given polynomials over finite fields have been obtained in the recent literature. Those are mainly based on Swan’s theorem in which discriminants of polynomials over a finite field or the integral ring Z play an important role. In this paper we consider discriminants of the composition of some polynomials over finite fields. The relation between the discriminants of composed polynomial and the original ones will be established. We apply this to obtain some results concerning the parity of the number of irreducible factors for several special polynomials over finite fields.eng
dcterms.accessRightsopen access
dcterms.creatorKim, Ryul
dcterms.creatorKoepf, Wolfram
dcterms.isPartOfMathematische Schriften Kassel ;; 08, 06ger
dcterms.source.journalMathematische Schriften Kasselger
dcterms.source.volume08, 06

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
prep0806.pdf
Size:
136.45 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.32 KB
Format:
Item-specific license agreed upon to submission
Description: