On the existence of symmetric minimizers

dc.date.accessioned2018-01-23T14:16:52Z
dc.date.available2018-01-23T14:16:52Z
dc.date.issued2018-01-23
dc.identifier.uriurn:nbn:de:hebis:34-2018012354238
dc.identifier.urihttp://hdl.handle.net/123456789/2018012354238
dc.language.isoeng
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectInheritance of symmetryeng
dc.subjectHaar measureeng
dc.subjectG-averageeng
dc.subject.ddc510
dc.subject.msc35B06ger
dc.subject.msc58D19ger
dc.subject.msc46G10ger
dc.titleOn the existence of symmetric minimizerseng
dc.typePreprint
dcterms.abstractIn this note we revisit a less known symmetrization method for functions with respect to a topological group, which we call G-averaging. We note that, although quite non-technical in nature, this method yields G-invariant minimizers of functionals satisfying some relaxed convexity properties. We give an abstract theorem and show how it can be applied to the p-Laplace and polyharmonic Poisson problem in order to construct symmetric solutions. We also pose some open problems and explore further possibilities where the method of G-averaging could be applied to.eng
dcterms.accessRightsopen access
dcterms.creatorStylianou, Athanasios
dcterms.isPartOfMathematische Schriften Kassel ;; 18, 01ger
dcterms.source.journalMathematische Schriften Kasselger
dcterms.source.volume18, 01

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
prep1801.pdf
Size:
256.73 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.23 KB
Format:
Item-specific license agreed upon to submission
Description: