On the existence of symmetric minimizers
dc.date.accessioned | 2018-01-23T14:16:52Z | |
dc.date.available | 2018-01-23T14:16:52Z | |
dc.date.issued | 2018-01-23 | |
dc.identifier.uri | urn:nbn:de:hebis:34-2018012354238 | |
dc.identifier.uri | http://hdl.handle.net/123456789/2018012354238 | |
dc.language.iso | eng | |
dc.rights | Urheberrechtlich geschützt | |
dc.rights.uri | https://rightsstatements.org/page/InC/1.0/ | |
dc.subject | Inheritance of symmetry | eng |
dc.subject | Haar measure | eng |
dc.subject | G-average | eng |
dc.subject.ddc | 510 | |
dc.subject.msc | 35B06 | ger |
dc.subject.msc | 58D19 | ger |
dc.subject.msc | 46G10 | ger |
dc.title | On the existence of symmetric minimizers | eng |
dc.type | Preprint | |
dcterms.abstract | In this note we revisit a less known symmetrization method for functions with respect to a topological group, which we call G-averaging. We note that, although quite non-technical in nature, this method yields G-invariant minimizers of functionals satisfying some relaxed convexity properties. We give an abstract theorem and show how it can be applied to the p-Laplace and polyharmonic Poisson problem in order to construct symmetric solutions. We also pose some open problems and explore further possibilities where the method of G-averaging could be applied to. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Stylianou, Athanasios | |
dcterms.isPartOf | Mathematische Schriften Kassel ;; 18, 01 | ger |
dcterms.source.journal | Mathematische Schriften Kassel | ger |
dcterms.source.volume | 18, 01 |