A note on dual prehomomorphisms from a group into the Margolis–Meakin expansion of a group
dc.date.accessioned | 2021-10-05T14:54:33Z | |
dc.date.available | 2021-10-05T14:54:33Z | |
dc.date.issued | 2020-08-07 | |
dc.description | The original article has been updated. Open Access funding enabled and organized by Projekt DEAL. | ger |
dc.description.sponsorship | Gefördert im Rahmen des Projekts DEAL | ger |
dc.identifier | doi:10.17170/kobra-202109224795 | |
dc.identifier.uri | http://hdl.handle.net/123456789/13284 | |
dc.language.iso | eng | eng |
dc.relation.doi | doi:10.1007/s00233-020-10118-1 | |
dc.rights | Namensnennung 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Margolis-Meakin expansion | eng |
dc.subject | E-unitary inverse monoid | eng |
dc.subject | dual prehomomorphism | eng |
dc.subject.ddc | 510 | |
dc.subject.swd | Halbgruppe | ger |
dc.subject.swd | Monoid | ger |
dc.title | A note on dual prehomomorphisms from a group into the Margolis–Meakin expansion of a group | eng |
dc.type | Aufsatz | |
dc.type.version | publishedVersion | |
dcterms.abstract | We give a category-free order theoretic variant of a key result in Auinger and Szendrei (J Pure Appl Algebra 204(3):493–506, 2006) and illustrate how it might be used to compute whether a finite X-generated group H admits a canonical dual prehomomorphism into the Margolis–Meakin expansion M(G) of a finite X-generated group G. We show that for G the Klein four-group a suitable H must be of exponent 6 at least and recapture a result of Szakács. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Billhardt, Bernd | |
dcterms.creator | Singha, Boorapa | |
dcterms.creator | Sommanee, Worachead | |
dcterms.creator | Thamkaew, Paweena | |
dcterms.creator | Tiammee, Jukrapong | |
dcterms.source.identifier | eissn:1432-2137 | |
dcterms.source.issue | Issue 3 | |
dcterms.source.journal | Semigroup Forum | eng |
dcterms.source.pageinfo | 534-546 | |
dcterms.source.volume | Volume 101 | |
kup.iskup | false |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.03 KB
- Format:
- Item-specific license agreed upon to submission
- Description: