On the equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field
Classification / Keywords
Citation
In: Mathematische Schriften Kassel 05, 19 / (2005) , S. ;
Collections
Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extention of k and let K be a subextention of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L)),Z[Gal(L/K)]).
@article{urn:nbn:de:hebis:34-2006042510081, author ={Bley, Werner}, title ={On the equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field}, keywords ={510 and Algebraische Zahlentheorie}, copyright ={https://rightsstatements.org/page/InC/1.0/}, language ={en}, year ={2005} }