🇬🇧

On the equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field

Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extention of k and let K be a subextention of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L)),Z[Gal(L/K)]).

Citation
In: Mathematische Schriften Kassel 05, 19 / (2005) , S. ;
@article{urn:nbn:de:hebis:34-2006042510081,
  author    ={Bley, Werner},
  title    ={On the equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field},
  keywords ={510 and Algebraische Zahlentheorie},
  copyright  ={https://rightsstatements.org/page/InC/1.0/},
  language ={en},
  year   ={2005}
}