Peak shaving at system level with a large district heating substation using deep learning forecasting models

dc.date.accessioned2024-06-10T11:04:46Z
dc.date.available2024-06-10T11:04:46Z
dc.date.issued2024-05-20
dc.description.sponsorshipGefördert im Rahmen des Projekts DEALger
dc.identifierdoi:10.17170/kobra-2024060610287
dc.identifier.urihttp://hdl.handle.net/123456789/15827
dc.language.isoeng
dc.relation.doidoi:10.1016/j.energy.2024.131690
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectforecastingeng
dc.subjectmachine learningeng
dc.subjectincremental learningeng
dc.subjectlarge district heating substationeng
dc.subjectthermal storageeng
dc.subjectpeak shavingeng
dc.subject.ddc333
dc.subject.ddc620
dc.subject.swdPrognoseger
dc.subject.swdMaschinelles Lernenger
dc.subject.swdInkrementelles Lernenger
dc.subject.swdFernwärmeversorgungger
dc.subject.swdWärmespeicherungger
dc.subject.swdLastspitzenkappungger
dc.titlePeak shaving at system level with a large district heating substation using deep learning forecasting modelseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractThe decarbonisation of urban district heating (DH) systems requires increased heating grid flexibility. Therefore, this article examines the optimised operation of a tank thermal energy storage (TTES) on the secondary side of a new DH substation for an industrial site in a German city, in order to shave the peaks of the whole DH system and thus reduce the need for heat-only boilers (HOB). The accuracy of heat load and return temperature forecasts for both the industrial consumer and the DH grid is critical to the performance of the optimisation-based operating strategy of the TTES. Therefore, long short-term memory neural networks are used in combination with continuous model updates through incremental learning to create two forecasting scenarios, one using only preceding data for the forecasts and the other including future weather data. The results show that high forecasting accuracy is most relevant for reducing the annual maximum peak, with a reduction of 2.8% in the preceding data scenario, 4% with future weather data and 7% in a benchmark with perfect forecasts. The economic viability of the storage through HOB heat savings is primarily affected by lower forecasting accuracy when the additional cost of HOB heat is less than 60 €/MWh.eng
dcterms.accessRightsopen access
dcterms.creatorTrabert, Ulrich
dcterms.creatorPag, Felix
dcterms.creatorOrozaliev, Janybek
dcterms.creatorJordan, Ulrike
dcterms.creatorVajen, Klaus
dcterms.source.articlenumber131690
dcterms.source.identifiereissn:1873-6785
dcterms.source.journalEnergyeng
dcterms.source.volumeVolume 301
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1_s2_0_S0360544224014634_main.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections