Water loss management strategies for developing countries
dc.contributor.corporatename | Kassel, Universität Kassel, Fachbereich Ökologische Agrarwissenschaften | |
dc.contributor.referee | Hensel, Oliver (Prof. Dr.) | |
dc.contributor.referee | Frechen, F.-B. (Dr.-Ing.) | |
dc.date.accessioned | 2016-06-30T08:23:15Z | |
dc.date.available | 2016-06-30T08:23:15Z | |
dc.date.examination | 2015-12-15 | |
dc.date.issued | 2016-06-30 | |
dc.description.sponsorship | The Volkswagen Stiftung Foundation | eng |
dc.identifier.uri | urn:nbn:de:hebis:34-2016063050520 | |
dc.identifier.uri | http://hdl.handle.net/123456789/2016063050520 | |
dc.language.iso | eng | |
dc.rights | Urheberrechtlich geschützt | |
dc.rights.uri | https://rightsstatements.org/page/InC/1.0/ | |
dc.subject | water | eng |
dc.subject | water loss | eng |
dc.subject | tap water | eng |
dc.subject | drinking water | eng |
dc.subject | leakages | eng |
dc.subject | Zimbabwe | eng |
dc.subject | Harare | eng |
dc.subject.ddc | 630 | |
dc.subject.swd | Simbabwe | ger |
dc.subject.swd | Harare | ger |
dc.subject.swd | Wasserversorgung | ger |
dc.subject.swd | Wasserverlust | ger |
dc.subject.swd | Leck | ger |
dc.title | Water loss management strategies for developing countries | eng |
dc.type | Dissertation | |
dcterms.abstract | Diese Arbeit beschäftigt sich mit nicht in Rechnung stellbaren Wasserverlusten in städtischen Versorgungsnetzen in Entwicklungsländern. Es soll das Wissen über diese Verluste erweitert und aufgezeigt werden, ob diese auf ein ökonomisch vertretbares Maß reduziert werden können. Die vorliegende Doktorarbeit untersucht solche unberechneten Wasserverluste und versucht, neben der Quantifizierung von Leckagen auch Entscheidungswerkzeuge für ein verbessertes Management der Versorgungsnetze in Entwicklungsländern zu erarbeiten. Als Fallstudie dient Harare, die Hauptstadt von Simbabwe. Wasserverluste in Verteilungsnetzen sind unvermeidbar, sollten aber auf ein ökonomisch tragbares Niveau reduziert werden, wenn ein nachhaltiger Betrieb erreicht werden soll. Wasserverluste können sowohl durch illegale und ungenehmigte Anschlüsse oder durch Undichtigkeiten im Verteilnetz, als auch durch mangelhafte Mess- und Berechnungssysteme entstehen. Es sind bereits viele Ansätze zur Verringerung von Verlusten in Wasserverteilsystemen bekannt geworden, entsprechend existieren dazu auch zahlreiche Methoden und Werkzeuge. Diese reichen von computergestützten Verfahren über gesetzliche und politische Vorgaben sowie ökonomische Berechnungen bis hin zu Maßnahmen der Modernisierung der Infrastruktur. Der Erfolg dieser Anstrengungen ist abhängig von der Umsetzbarkeit und dem Umfeld, in dem diese Maßnahmen durchgeführt werden. Die Bewertung der Arbeitsgüte einer jeden Wasserversorgungseinheit basiert auf der Effektivität des jeweiligen Verteilungssystems. Leistungs- und Bewertungszahlen sind die meist genutzten Ansätze, um Wasserverteilsysteme und ihre Effizienz einzustufen. Weltweit haben sich zur Bewertung als Indikatoren die finanzielle und die technische Leistungsfähigkeit durchgesetzt. Die eigene Untersuchung zeigt, dass diese Indikatoren in vielen Wasserversorgungssystemen der Entwicklungsländer nicht zur Einführung von Verlust reduzierenden Managementstrategien geführt haben. Viele durchgeführte Studien über die Einführung von Maßnahmen zur Verlustreduzierung beachten nur das gesamte nicht in Rechnung stellbare Wasser, ohne aber den Anteil der Leckagen an der Gesamthöhe zu bestimmen. Damit ist keine Aussage über die tatsächliche Zuordnung der Verluste möglich. Aus diesem Grund ist ein Bewertungsinstrument notwendig, mit dem die Verluste den verschiedenen Ursachen zugeordnet werden können. Ein solches Rechenwerkzeug ist das South African Night Flow Analysis Model (SANFLOW) der südafrikanischen Wasser-Forschungskommission, das Untersuchungen von Wasserdurchfluss und Anlagendruck in einzelnen Verteilbezirken ermöglicht. In der vorliegenden Arbeit konnte nachgewiesen werden, dass das SANFLOW-Modell gut zur Bestimmung des Leckageanteiles verwendet werden kann. Daraus kann gefolgert werden, dass dieses Modell ein geeignetes und gut anpassbares Analysewerkzeug für Entwicklungsländer ist. Solche computergestützte Berechnungsansätze können zur Bestimmung von Leckagen in Wasserverteilungsnetzen eingesetzt werden. Eine weitere Möglichkeit ist der Einsatz von Künstlichen Neuronalen Netzen (Artificial Neural Network – ANN), die trainiert und dann zur Vorhersage der dynamischen Verhältnisse in Wasserversorgungssystemen genutzt werden können. Diese Werte können mit der Wassernachfrage eines definierten Bezirks verglichen werden. Zur Untersuchung wurde ein Mehrschichtiges Künstliches Neuronales Netz mit Fehlerrückführung zur Modellierung des Wasserflusses in einem überwachten Abschnitt eingesetzt. Zur Bestimmung des Wasserbedarfes wurde ein MATLAB Algorithmus entwickelt. Aus der Differenz der aktuellen und des simulierten Wassernachfrage konnte die Leckagerate des Wasserversorgungssystems ermittelt werden. Es konnte gezeigt werden, dass mit dem angelernten Neuronalen Netzwerk eine Vorhersage des Wasserflusses mit einer Genauigkeit von 99% möglich ist. Daraus lässt sich die Eignung von ANNs als flexibler und wirkungsvoller Ansatz zur Leckagedetektion in der Wasserversorgung ableiten. Die Untersuchung zeigte weiterhin, dass im Versorgungsnetz von Harare 36 % des eingespeisten Wassers verloren geht. Davon wiederum sind 33 % auf Leckagen zurückzuführen. Umgerechnet bedeutet dies einen finanziellen Verlust von monatlich 1 Millionen Dollar, was 20 % der Gesamteinnahmen der Stadt entspricht. Der Stadtverwaltung von Harare wird daher empfohlen, aktiv an der Beseitigung der Leckagen zu arbeiten, da diese hohen Verluste den Versorgungsbetrieb negativ beeinflussen. Abschließend wird in der Arbeit ein integriertes Leckage-Managementsystem vorgeschlagen, das den Wasserversorgern eine Entscheidungshilfe bei zu ergreifenden Maßnahmen zur Instandhaltung des Verteilnetzes geben soll. | ger |
dcterms.accessRights | open access | |
dcterms.alternative | Understanding the dynamics of water leakages | eng |
dcterms.creator | Makaya, Eugine |