First-Order Shape Derivative of the Energy for Elastic Plates with Rigid Inclusions and Interfacial Cracks

dc.date.accessioned2021-09-15T12:42:15Z
dc.date.available2021-09-15T12:42:15Z
dc.date.issued2020-11-16
dc.description.sponsorshipGefördert im Rahmen des Projekts DEALger
dc.identifierdoi:10.17170/kobra-202109064714
dc.identifier.urihttp://hdl.handle.net/123456789/13246
dc.language.isoengeng
dc.relation.doidoi:10.1007/s00245-020-09729-5
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectKirchhoff-Love elastic plateeng
dc.subjectrigid inclusioneng
dc.subjectinterfacial crackeng
dc.subjectvariational modeleng
dc.subjectshape derivative of energyeng
dc.subjectGriffith formulaeng
dc.subject.ddc510
dc.subject.ddc620
dc.subject.swdKirchhoff-Love plate theoryger
dc.subject.swdEinschlussger
dc.subject.swdGrenzflächeger
dc.subject.swdRissger
dc.subject.swdEnergieger
dc.subject.swdRissausbreitungger
dc.subject.swdBruchmechanikger
dc.titleFirst-Order Shape Derivative of the Energy for Elastic Plates with Rigid Inclusions and Interfacial Crackseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractWithin the framework of Kirchhoff–Love plate theory, we analyze a variational model for elastic plates with rigid inclusions and interfacial cracks. The main feature of the model is a fully coupled nonpenetration condition that involves both the normal component of the longitudinal displacements and the normal derivative of the transverse deflection of the crack faces. Without making any artificial assumptions on the crack geometry and shape variation, we prove that the first-order shape derivative of the potential deformation energy is well defined and provide an explicit representation for it. The result is applied to derive the Griffith formula for the energy release rate associated with crack extension.eng
dcterms.accessRightsopen access
dcterms.creatorRudoy, Evgeny
dcterms.creatorShcherbakov, Viktor
dcterms.source.identifiereissn:1432-0606
dcterms.source.issueIssue 3
dcterms.source.journalApplied Mathematics & Optimizationeng
dcterms.source.pageinfo2775-2802
dcterms.source.volumeVolume 84
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Rudoy_Shcherbakov2021_Article_First_OrderShapeDerivativeOfTh.pdf
Size:
483.21 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections