Reservoir engineering using quantum optimal control for qubit reset

dc.date.accessioned2019-11-21T14:48:01Z
dc.date.available2019-11-21T14:48:01Z
dc.date.issued2019-09-24
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kassel
dc.identifierdoi:10.17170/kobra-20191121797
dc.identifier.urihttp://hdl.handle.net/123456789/11361
dc.language.isoeng
dc.relation.doidoi:10.1088/1367-2630/ab41ad
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectquantum optimal controleng
dc.subjectqubit initializationeng
dc.subjecttime-local master equation with time-dependent decayeng
dc.subjectquantum reservoirengineeringeng
dc.subjectcircuit QEDeng
dc.subject.ddc530
dc.titleReservoir engineering using quantum optimal control for qubit reseteng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractWe determine how to optimally reset a superconducting qubit which interacts with a thermal environment in such a way that the coupling strength is tunable. Describing the system in terms of a time-local master equation with time-dependent decay rates and using quantum optimal control theory, we identify temporal shapes of tunable level splittings which maximize the efficiency of the reset protocol in terms of duration and error. Time-dependent level splittings imply a modification of the system-environment coupling, varying the decay rates as well as the Lindblad operators. Our approach thus demonstrates efficient reservoir engineering employing quantum optimal control. We find the optimized reset strategy to consist in maximizing the decay rate from one state and driving non-adiabatic population transfer into this strongly decaying state.eng
dcterms.accessRightsopen access
dcterms.creatorBasilewitsch, Daniel
dcterms.creatorCosco, Francesco
dcterms.creatorLo Gullo, Nicolino
dcterms.creatorMöttönen, Mikko
dcterms.creatorAla-Nissilä, Tapio
dcterms.creatorKoch, Christiane P.
dcterms.creatorManiscalco, Sabrina
dcterms.source.identifierISSN 1367-2630
dcterms.source.journalNew Journal of Physics
dcterms.source.pageinfo93054
dcterms.source.volume21

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Basilewitsch_2019_New_J_Phys_21_093054.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections