Topic space trajectories

dc.date.accessioned2021-07-21T12:49:06Z
dc.date.available2021-07-21T12:49:06Z
dc.date.issued2021-05-15
dc.description.sponsorshipGefördert im Rahmen des Projekts DEALger
dc.identifierdoi:10.17170/kobra-202107054243
dc.identifier.urihttp://hdl.handle.net/123456789/13030
dc.language.isoengeng
dc.relation.doidoi:10.1007/s11192-021-03931-0
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjecttopic modelseng
dc.subjectnon-negative matrix factorizationeng
dc.subjectmultidimensional scalingeng
dc.subjectpublication dynamicseng
dc.subjectinterpretable machine learningeng
dc.subject.ddc004
dc.subject.swdThemager
dc.subject.swdWissenschaftliche Literaturger
dc.subject.swdLiteraturproduktionger
dc.subject.swdMaschinelles Lernenger
dc.subject.swdMultidimensionale Skalierungger
dc.subject.swdNichtnegative Matrixger
dc.titleTopic space trajectorieseng
dc.title.subtitleA case study on machine learning literatureeng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractThe annual number of publications at scientific venues, for example, conferences and journals, is growing quickly. Hence, even for researchers it becomes harder and harder to keep track of research topics and their progress. In this task, researchers can be supported by automated publication analysis. Yet, many such methods result in uninterpretable, purely numerical representations. As an attempt to support human analysts, we present topic space trajectories, a structure that allows for the comprehensible tracking of research topics. We demonstrate how these trajectories can be interpreted based on eight different analysis approaches. To obtain comprehensible results, we employ non-negative matrix factorization as well as suitable visualization techniques. We show the applicability of our approach on a publication corpus spanning 50 years of machine learning research from 32 publication venues. In addition to a thorough introduction of our method, our focus is on an extensive analysis of the results we achieved. Our novel analysis method may be employed for paper classification, for the prediction of future research topics, and for the recommendation of fitting conferences and journals for submitting unpublished work. An advantage in these applications over previous methods lies in the good interpretability of the results obtained through our methods.eng
dcterms.accessRightsopen access
dcterms.creatorSchäfermeier, Bastian
dcterms.creatorStumme, Gerd
dcterms.creatorHanika, Tom
dcterms.source.identifiereissn:1588-2861
dcterms.source.issueIssue 7
dcterms.source.journalScientometricseng
dcterms.source.pageinfo5759-5795
dcterms.source.volumeVolume 126
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Schaefermeier2021_Article_TopicSpaceTrajectories.pdf
Size:
3.85 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections