Recent Developments in the Field of Modified Patankar-Runge-Kutta-methods

dc.date.accessioned2022-02-15T16:41:33Z
dc.date.available2022-02-15T16:41:33Z
dc.date.issued2021-12-14
dc.description.sponsorshipGefördert im Rahmen des Projekts DEALger
dc.identifierdoi:10.17170/kobra-202112165265
dc.identifier.urihttp://hdl.handle.net/123456789/13622
dc.language.isoengeng
dc.relation.doidoi:10.1002/pamm.202100027
dc.rightsNamensnennung-Nicht-kommerziell 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.ddc510
dc.subject.swdRunge-Kutta-Verfahrenger
dc.subject.swdEntwicklungger
dc.subject.swdNumerische Mathematikger
dc.titleRecent Developments in the Field of Modified Patankar-Runge-Kutta-methodseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractModified Patankar-Runge-Kutta (MPRK) schemes are numerical one-step methods for the solution of positive and conservative production-destruction systems (PDS). They adapt explicit Runge-Kutta schemes in a way to ensure positivity and conservation of the numerical approximation irrespective of the chosen time step size. Due to nonlinear relationships between the next and current iterate, the stability analysis for such schemes is lacking. In this work, we introduce a strategy to analyze the MPRK22(α)-schemes in the case of positive and conservative PDS. Thereby, we point out that a usual stability analysis based on Dahlquist's equation is not possible in order to understand the properties of this class of schemes.eng
dcterms.accessRightsopen access
dcterms.creatorIzgin, Thomas
dcterms.creatorKopecz, Stefan
dcterms.creatorMeister, Andreas
dcterms.source.articlenumbere202100027
dcterms.source.identifiereissn:1617-7061
dcterms.source.issueIssue 1
dcterms.source.journalProceedings in applied mathematics and mechanics (PAMM)eng
dcterms.source.volumeVolume 21
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Proc_Appl_Math_Mech_2021_Izgin_Recent_Developments_in_the_Field_of_Modified_Patankar_Runge_Kutta_methods.pdf
Size:
356.9 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections