Predicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methods

dc.date.accessioned2023-04-24T08:35:47Z
dc.date.available2023-04-24T08:35:47Z
dc.date.issued2022-09-09
dc.identifierdoi:10.17170/kobra-202304217875
dc.identifier.urihttp://hdl.handle.net/123456789/14621
dc.language.isoeng
dc.relation.doidoi:10.3390/cryst12091281
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmachine learningeng
dc.subjecteXtreme Gradient Boostingeng
dc.subjectZerilli-Armstrongeng
dc.subjectflow stresseng
dc.subjectAA7075eng
dc.subject.ddc600
dc.subject.ddc670
dc.subject.swdAluminiumlegierungger
dc.subject.swdMaschinelles Lernenger
dc.subject.swdFließgrenzeger
dc.titlePredicting Flow Stress Behavior of an AA7075 Alloy Using Machine Learning Methodseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractThe present work focuses on the prediction of the hot deformation behavior of thermo-mechanically processed precipitation hardenable aluminum alloy AA7075. The data considered focus on a novel hot forming process at different tool temperatures ranging from 24°C to 350°C to set different cooling rates after solution heat-treatment. Isothermal uniaxial tensile tests in the temperature range of 200°C to 400°C and at strain rates ranging from 0.001 s-¹ to 0.1 s-¹ were carried out on four different material conditions. The present paper mainly focuses on a comparative study of modeling techniques based on Machine Learning (ML) and the Zerilli–Armstrong model (Z–A) as reference. Related work focuses on predicting single data points of the curves that the model was trained on. Due to the way data were split with respect to training and testing data, it is possible to predict entire stress–strain curves. The model allows to decrease the number of required laboratory experiments, eventually saving costs and time in future experiments. While all investigated ML methods showed a higher performance than the Z–A model, the extreme Gradient Boosting model (XGB) showed superior results, i.e., the highest error reduction of 91% with respect to the Mean Squared Error.eng
dcterms.accessRightsopen access
dcterms.creatorDecke, Jens
dcterms.creatorEngelhardt, Anna
dcterms.creatorRauch, Lukas
dcterms.creatorDegener, Sebastian
dcterms.creatorSajadifar, Seyed Vahid
dcterms.creatorScharifi, Emad
dcterms.creatorSteinhoff, Kurt
dcterms.creatorNiendorf, Thomas
dcterms.creatorSick, Bernhard
dcterms.extent19 Seiten
dcterms.source.articlenumber1281
dcterms.source.identifiereissn:2073-4352
dcterms.source.issueIssue 9
dcterms.source.journalCrystalseng
dcterms.source.volumeVolume 12
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
DeckeEngelhardtRauchDegenerSajadifarScharifiSteinhoffNiendorfSickPredicting_Flow_Stress_Behavior_of_an_AA7075_Alloy_Using.pdf
Size:
14.86 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections