Design of Robust Total Site Heat Recovery Loops via Monte Carlo Simulation
Sponsor
Citation
In: Energies Volume 12 / Issue 5 (2019-03-10) , S. 930; ISSN 1996-1073
Collections
For increased total site heat integration, the optimal sizing and robust operation of a heat recovery loop (HRL) are prerequisites for economic efficiency. However, sizing based on one representative time series, not considering the variability of process streams due to their discontinuous operation, often leads to oversizing. The sensitive evaluation of the performance of an HRL by Monte Carlo (MC) simulation requires sufficient historical data and performance models. Stochastic time series are generated by distribution functions of measured data. With these inputs, one can then model and reliably assess the benefits of installing a new HRL. A key element of the HRL is a stratified heat storage tank. Validation tests of a stratified tank (ST) showed sufficient accuracy with acceptable simulation time for the variable layer height (VLH) multi-node (MN) modelling approach. The results of the MC simulation of the HRL system show only minor yield losses in terms of heat recovery rate (HRR) for smaller tanks. In this way, costs due to oversizing equipment can be reduced by better understanding the energy-capital trade-off.
@article{doi:10.17170/kobra-20190517484, author ={Schlosser, Florian and Peesel, Ron-Hendrik and Meschede, Henning and Philipp, Matthias and Walmsley, Timothy Gordon and Walmsley, Michael R. W. and Atkins, Martin J.}, title ={Design of Robust Total Site Heat Recovery Loops via Monte Carlo Simulation}, copyright ={https://rightsstatements.org/page/InC/1.0/}, language ={en}, journal ={Energies}, year ={2019-03-10} }