Duplication coefficients via generating functions
dc.date.accessioned | 2006-11-09T14:10:32Z | |
dc.date.available | 2006-11-09T14:10:32Z | |
dc.date.issued | 2006 | |
dc.format.extent | 132225 bytes | |
dc.format.extent | 129766 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | urn:nbn:de:hebis:34-2006110915657 | |
dc.identifier.uri | http://hdl.handle.net/123456789/2006110915657 | |
dc.language.iso | eng | |
dc.rights | Urheberrechtlich geschützt | |
dc.rights.uri | https://rightsstatements.org/page/InC/1.0/ | |
dc.subject | Duplication coefficients | eng |
dc.subject | generating functions | eng |
dc.subject | Brenke polynomials | eng |
dc.subject | Boas-Buck polynomials | eng |
dc.subject | Brafman polynomials | eng |
dc.subject | Chaunday polynomials | eng |
dc.subject | Gould-Hopper polynomials | eng |
dc.subject | Hermite polynomials | eng |
dc.subject | Laguerre polynomials | eng |
dc.subject | Jacobi polynomials | eng |
dc.subject | Charlier polynomials | eng |
dc.subject | Meixner polynomials | eng |
dc.subject | Krawtchouk polynomials | eng |
dc.subject | classical discrete orthogonal polynomials | eng |
dc.subject.ddc | 510 | |
dc.title | Duplication coefficients via generating functions | eng |
dc.type | Preprint | |
dcterms.abstract | In this paper, we solve the duplication problem P_n(ax) = sum_{m=0}^{n}C_m(n,a)P_m(x) where {P_n}_{n>=0} belongs to a wide class of polynomials, including the classical orthogonal polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouk) for the specific case a = −1. We give closed-form expressions as well as recurrence relations satisfied by the duplication coefficients. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Chaggara, Hamza | |
dcterms.creator | Koepf, Wolfram | |
dcterms.isPartOf | Mathematische Schriften Kassel ;; 06, 05 | ger |
dcterms.source.journal | Mathematische Schriften Kassel | ger |
dcterms.source.volume | 06, 05 |