Duplication coefficients via generating functions

dc.date.accessioned2006-11-09T14:10:32Z
dc.date.available2006-11-09T14:10:32Z
dc.date.issued2006
dc.format.extent132225 bytes
dc.format.extent129766 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.identifier.uriurn:nbn:de:hebis:34-2006110915657
dc.identifier.urihttp://hdl.handle.net/123456789/2006110915657
dc.language.isoeng
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectDuplication coefficientseng
dc.subjectgenerating functionseng
dc.subjectBrenke polynomialseng
dc.subjectBoas-Buck polynomialseng
dc.subjectBrafman polynomialseng
dc.subjectChaunday polynomialseng
dc.subjectGould-Hopper polynomialseng
dc.subjectHermite polynomialseng
dc.subjectLaguerre polynomialseng
dc.subjectJacobi polynomialseng
dc.subjectCharlier polynomialseng
dc.subjectMeixner polynomialseng
dc.subjectKrawtchouk polynomialseng
dc.subjectclassical discrete orthogonal polynomialseng
dc.subject.ddc510
dc.titleDuplication coefficients via generating functionseng
dc.typePreprint
dcterms.abstractIn this paper, we solve the duplication problem P_n(ax) = sum_{m=0}^{n}C_m(n,a)P_m(x) where {P_n}_{n>=0} belongs to a wide class of polynomials, including the classical orthogonal polynomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouk) for the specific case a = −1. We give closed-form expressions as well as recurrence relations satisfied by the duplication coefficients.eng
dcterms.accessRightsopen access
dcterms.creatorChaggara, Hamza
dcterms.creatorKoepf, Wolfram
dcterms.isPartOfMathematische Schriften Kassel ;; 06, 05ger
dcterms.source.journalMathematische Schriften Kasselger
dcterms.source.volume06, 05

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
prep0605.pdf
Size:
128.58 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.32 KB
Format:
Item-specific license agreed upon to submission
Description: