Numerical simulation of viscoelastic fluid-structure interaction benchmarks and their application to the human eye
dc.date.accessioned | 2023-03-17T09:02:16Z | |
dc.date.available | 2023-03-17T09:02:16Z | |
dc.date.issued | 2022-10-11 | |
dc.description.sponsorship | Gefördert durch den Publikationsfonds der Universität Kassel | |
dc.description.sponsorship | The financial support for this project is provided by the Klaus Tschira Stiftung GmbH, Project No. 00.265.2015. | |
dc.identifier | doi:10.17170/kobra-202303177652 | |
dc.identifier.uri | http://hdl.handle.net/123456789/14503 | |
dc.language.iso | eng | |
dc.relation.doi | doi:10.1007/s42452-022-05185-8 | |
dc.relation.projectid | Klaus Tschira Stiftung gGmbH, Project No. 00.265.2015 | |
dc.rights | Namensnennung 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Fluid-solid interactions | eng |
dc.subject | Viscoelastic fluidsng | eng |
dc.subject | Finite element | eng |
dc.subject | Adaptive methods | eng |
dc.subject | Pathology and pathophysiology of the human eye | eng |
dc.subject.ddc | 500 | |
dc.subject.swd | Fluid-Struktur-Wechselwirkung | ger |
dc.subject.swd | Viskoelastizität | ger |
dc.subject.swd | Finite-Elemente-Methode | ger |
dc.subject.swd | Adaptive Verfahren | ger |
dc.title | Numerical simulation of viscoelastic fluid-structure interaction benchmarks and their application to the human eye | eng |
dc.type | Aufsatz | |
dc.type.version | publishedVersion | |
dcterms.abstract | We present a numerical solution method for time-dependent viscoelastic fluid–structure interaction employing the arbitrary Lagrangian Eulerian framework. The derived monolithic variational formulation is discretized in time using the shifted Crank–Nicolson scheme and in space using the finite element method. For the linearisation we employ Newton’s method with exact Jacobians. The viscoelastic fluid is modelled either using the Oldroyd-B or a Burgers-type model. The elastic structures are non-linear hyperelastic materials. We validate the implementation on benchmark problems and numerically analyse the convergence for global mesh refinement and adaptive mesh refinement using the dual-weighted residual method. Furthermore we numerically analyse the influence of the viscoelasticity of the fluid on typical goal functionals like the drag, the lift and the displacement. The derived numerical solution method is applied to ophthalmology where we analyse the interaction of the viscoelastic vitreous with its surrounding elastic structures. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Drobny, Alexander | |
dcterms.creator | Friedmann, Elfriede | |
dcterms.source.articlenumber | Article: 299 | |
dcterms.source.identifier | eissn:2523-3971 | |
dcterms.source.issue | Issue 11 | |
dcterms.source.journal | SN Applied Sciences | eng |
dcterms.source.volume | Volume 4 | |
kup.iskup | false |