A Logic Based Approach to Finding Real Singularities of Implicit Ordinary Differential Equations
dc.date.accessioned | 2021-05-25T10:29:42Z | |
dc.date.available | 2021-05-25T10:29:42Z | |
dc.date.issued | 2020-06-17 | |
dc.description.sponsorship | Gefördert im Rahmen des Projekts DEAL | ger |
dc.identifier | doi:10.17170/kobra-202105203943 | |
dc.identifier.uri | http://hdl.handle.net/123456789/12847 | |
dc.language.iso | eng | eng |
dc.relation.doi | doi:10.1007/s11786-020-00485-x | |
dc.rights | Namensnennung 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | implicit differential equations | eng |
dc.subject | geometric singularities | eng |
dc.subject | vessiot distribution | eng |
dc.subject | real algebraic computations | eng |
dc.subject | logic computation | eng |
dc.subject.ddc | 510 | |
dc.subject.swd | Implizite Differentialgleichung | ger |
dc.subject.swd | Geometrie | ger |
dc.subject.swd | Singularität <Mathematik> | ger |
dc.subject.swd | Reelle algebraische Geometrie | ger |
dc.subject.swd | Computational logic | ger |
dc.title | A Logic Based Approach to Finding Real Singularities of Implicit Ordinary Differential Equations | eng |
dc.type | Aufsatz | |
dc.type.version | publishedVersion | |
dcterms.abstract | We discuss the effective computation of geometric singularities of implicit ordinary differential equations over the real numbers using methods from logic. Via the Vessiot theory of differential equations, geometric singularities can be characterised as points where the behaviour of a certain linear system of equations changes. These points can be discovered using a specifically adapted parametric generalisation of Gaussian elimination combined with heuristic simplification techniques and real quantifier elimination methods. We demonstrate the relevance and applicability of our approach with computational experiments using a prototypical implementation in Reduce. | eng |
dcterms.accessRights | open access | |
dcterms.creator | Seiler, Werner M. | |
dcterms.creator | Seiß, Matthias | |
dcterms.creator | Sturm, Thomas | |
dcterms.source.identifier | eissn:1661-8289 | |
dcterms.source.issue | Issue 2 | |
dcterms.source.journal | Mathematics in Computer Science (MCS) | eng |
dcterms.source.pageinfo | 333-352 | |
dcterms.source.volume | Volume 15 | |
kup.iskup | false |
Files
Original bundle
1 - 1 of 1
- Name:
- Seiler2021_Article_ALogicBasedApproachToFindingRe.pdf
- Size:
- 1.45 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 3.03 KB
- Format:
- Item-specific license agreed upon to submission
- Description: