Simulation framework for crystallization in melt flows of semi-crystalline polymers based on phenomenological models

dc.date.accessioned2022-07-25T11:27:29Z
dc.date.available2022-07-25T11:27:29Z
dc.date.issued2022-04-16
dc.description.sponsorshipGefördert im Rahmen des Projekts DEALger
dc.identifierdoi:10.17170/kobra-202205186203
dc.identifier.urihttp://hdl.handle.net/123456789/14013
dc.language.isoengeng
dc.relation.doidoi:10.1007/s00419-022-02153-x
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcrystallizationeng
dc.subjectviscoelastic fluidseng
dc.subjectrheologyeng
dc.subjectCFDeng
dc.subjectOpenFOAMeng
dc.subjectnon-isothermal flowseng
dc.subject.ddc660
dc.subject.swdKristallisationger
dc.subject.swdViskoelastizitätger
dc.subject.swdRheologieger
dc.subject.swdDifferential scanning calorimetryger
dc.subject.swdNumerische Strömungssimulationger
dc.subject.swdKunststoffger
dc.titleSimulation framework for crystallization in melt flows of semi-crystalline polymers based on phenomenological modelseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractPolymer components are shaped mostly out of the molten state. As in the case of semi-crystalline polymers, crystallization can be suppressed by shock cooling, thermal process design allows to influence the solid bodies properties. A simulation approach that enables to predict these properties based on a forecast of crystallinity is presented in this paper. The main effects to consider and possibilities of modeling and simulation are discussed. A detailed description of how to create an experimental foundation using dynamic scanning calorimetry (DSC) and a rheometer is provided. Suppression of crystallization is modeled by a novel phenomenological approach, based on data over a large band of cooling rates. Special focus is put on parameter identification and extension of insufficient DSC data. The mechanical behavior is modeled using a weighted approach based on a nonlinear-thermoviscoelastic model for the molten state and a highly viscous Newtonian model for the solid state. Parameterization of both models is highlighted. An implementation in OpenFOAM is documented, emphasizing specific methods that were applied. Results of simulations for a simplified profile extrusion and injection molding case are presented. Basic relationships are forecasted correctly by the method, and important findings are presented for both processes.eng
dcterms.accessRightsopen access
dcterms.creatorDescher, Stefan
dcterms.creatorWünsch, Olaf
dcterms.source.identifiereissn:1432-0681
dcterms.source.issueIssue 6
dcterms.source.journalArchive of Applied Mechanicseng
dcterms.source.pageinfo1859-1878
dcterms.source.volumeVolume 92
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Descher_Wuensch2022_Article_SimulationFrameworkForCrystall.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections