Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities

dc.date.accessioned2020-12-23T09:06:48Z
dc.date.available2020-12-23T09:06:48Z
dc.date.issued2020-12-04
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.identifierdoi:10.17170/kobra-202012222891
dc.identifier.urihttp://hdl.handle.net/123456789/12368
dc.language.isoengeng
dc.relation.doidoi:10.3390/mi11121080
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectsingle-crystal diamondeng
dc.subjectmembraneseng
dc.subjectfiber-based microcavityeng
dc.subjectnanophotonicseng
dc.subjectmicromaskingeng
dc.subjectroughness reductioneng
dc.subject.ddc530
dc.subject.ddc600
dc.subject.swdEinkristallger
dc.subject.swdDiamantger
dc.subject.swdMembranger
dc.subject.swdNanophotonikger
dc.subject.swdRauigkeitger
dc.titleFabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavitieseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractThe development of quantum technologies is one of the big challenges in modern research. A crucial component for many applications is an efficient, coherent spin–photon interface, and coupling single-color centers in thin diamond membranes to a microcavity is a promising approach. To structure such micrometer thin single-crystal diamond (SCD) membranes with a good quality, it is important to minimize defects originating from polishing or etching procedures. Here, we report on the fabrication of SCD membranes, with various diameters, exhibiting a low surface roughness down to 0.4 nm on a small area scale, by etching through a diamond bulk mask with angled holes. A significant reduction in pits induced by micromasking and polishing damages was accomplished by the application of alternating Ar/Cl2 + O2 dry etching steps. By a variation of etching parameters regarding the Ar/Cl2 step, an enhanced planarization of the surface was obtained, in particular, for surfaces with a higher initial surface roughness of several nanometers. Furthermore, we present the successful bonding of an SCD membrane via van der Waals forces on a cavity mirror and perform finesse measurements which yielded values between 500 and 5000, depending on the position and hence on the membrane thickness. Our results are promising for, e.g., an efficient spin–photon interface.eng
dcterms.accessRightsopen access
dcterms.creatorHeupel, Julia
dcterms.creatorPallmann, Maximilian
dcterms.creatorKörber, Jonathan
dcterms.creatorMerz, Rolf
dcterms.creatorKopnarski, Michael
dcterms.creatorStöhr, Rainer
dcterms.creatorReithmaier, Johann Peter
dcterms.creatorHunger, David
dcterms.creatorPopov, Cyril
dcterms.source.articlenumber1080
dcterms.source.identifierEISSN 2072-666X
dcterms.source.issueIssue 12
dcterms.source.journalMicromachineseng
dcterms.source.volumeVolume 11
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
micromachines_11_01080_v2.pdf
Size:
2.5 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections