Explicit Description Of Isogeny And Isomorphism Classes Of Drinfeld Modules Of Higher Rank Over Finite Fields
Classification / Keywords
Collections
When jumping from the number fields theory to the function fields theory, one cannot miss the deep analogy between rank 1 Drinfeld modules and the group of root of unity and the analogy between rank 2 Drinfeld modules and elliptic curves. But so far, there is no known structure in number fields theory that is analogous to the Drinfeld modules of higher rank r ≥ 3. In this thesis we investigate the classes of those Drinfeld modules of higher rank r ≥ 3 defined over a finite field L. We describe explicitly the Weil polynomials defining the isogeny classes of rank r Drinfeld modules defined over a finite field L for any rank r ≥ 3, which generalizes what Yu already did for r = 2. We also provide a necessary and sufficient condition for an order O in the endomorphism algebra corresponding to some isogeny classes, to be the endomorphism ring of a Drinfeld module. To complete the classification, we define the notion of fine isomorphy invariants for any rank r Drinfeld module defined over a finite field L and we prove that the fine isomorphy invariants together with the J-invariants describe the L-isomorphism classes of rank r Drinfeld modules defined over the finite field L.
@phdthesis{doi:10.17170/kobra-202007081428, author ={Nkotto Nkung Assong, Sedric}, title ={Explicit Description Of Isogeny And Isomorphism Classes Of Drinfeld Modules Of Higher Rank Over Finite Fields}, keywords ={510 and Drinfeld-Modul and Isogenie and Endomorphismus}, copyright ={https://rightsstatements.org/page/InC/1.0/}, language ={en}, school={Kassel, Universität Kassel, Fachbereich Mathematik und Naturwissenschaften, Institut für Mathematik}, year ={2020} }