Exploring the mechanical properties of additively manufactured carbon-rich zirconia 3D microarchitectures

dc.date.accessioned2023-08-02T08:50:08Z
dc.date.available2023-08-02T08:50:08Z
dc.date.issued2023-07-11
dc.identifierdoi:10.17170/kobra-202308018552
dc.identifier.urihttp://hdl.handle.net/123456789/14964
dc.language.isoeng
dc.relation.doidoi:10.1016/j.matdes.2023.112142
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectadditive manufacturingeng
dc.subject3D printingeng
dc.subjectzirconiaeng
dc.subjectmicromechanicseng
dc.subjectmicropillar compressioneng
dc.subject.ddc600
dc.subject.ddc660
dc.subject.swdRapid Prototyping <Fertigung>ger
dc.subject.swd3D-Druckger
dc.subject.swdZirkoniumdioxidger
dc.subject.swdMikromechanikger
dc.subject.swdMechanische Eigenschaftger
dc.subject.swdLithografieger
dc.titleExploring the mechanical properties of additively manufactured carbon-rich zirconia 3D microarchitectureseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractTwo-photon lithography (TPL) is a promising technique for manufacturing ceramic microstructures with nanoscale resolution. The process relies on tailor-made precursor resins rich in metal–organic and organic constituents, which can lead to carbon-based residues incorporated within the ceramic microstructures. While these are generally considered unwanted impurities, our study reveals that the presence of carbon-rich residues in the form of graphitic and disordered carbon in tetragonal (t-) ZrO₂ can benefit the mechanical strength of TPL microstructures. In order to achieve a better understanding of these effects, we deconvolute the structural and materials contributions to the strength of the 3D microarchitectures by comparing them to plain micropillars. We vary the organic content by different thermal treatments, resulting in different crystal structures. The highest compression strength of 3.73 ± 0.21 GPa and ductility are reached for the t-ZrO₂ micropillars, which also contain the highest carbon content. This paradoxical finding opens up new perspectives and will foster the development of “brick and mortar”-like ceramic microarchitectures.eng
dcterms.accessRightsopen access
dcterms.creatorWinczewski, Jędrzej Piotr
dcterms.creatorZeiler, Stefan
dcterms.creatorGabel, Stefan
dcterms.creatorSusarrey Arce, Arturo
dcterms.creatorGardeniers, Han J. G. E.
dcterms.creatorMerle, Benoit
dcterms.source.articlenumber112142
dcterms.source.identifiereissn:0264-1275
dcterms.source.journalMaterials & Designeng
dcterms.source.volumeVolume 232
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
WinczewskiZeilerGabelSusarreyArceGardeniersMerleExploringTheMechanicalProperties.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections