Translatory and rotatory motion of exchange-bias capped Janus particles controlled by dynamic magnetic field landscapes

dc.date.accessioned2022-04-22T15:45:50Z
dc.date.available2022-04-22T15:45:50Z
dc.date.issued2021-11-08
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.identifierdoi:10.17170/kobra-202204216062
dc.identifier.urihttp://hdl.handle.net/123456789/13772
dc.language.isoengeng
dc.relation.doidoi:10.1038/s41598-021-01351-x
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectapplied physicseng
dc.subjectcolloidseng
dc.subjectlab-on-a-chipeng
dc.subjectmagnetic properties and materialseng
dc.subjectsensors and biosensorseng
dc.subject.ddc530
dc.subject.ddc600
dc.subject.swdAngewandte Physikger
dc.subject.swdKolloidger
dc.subject.swdLab on a Chipger
dc.subject.swdMagnetische Eigenschaftger
dc.subject.swdSensorger
dc.subject.swdBiosensorger
dc.titleTranslatory and rotatory motion of exchange-bias capped Janus particles controlled by dynamic magnetic field landscapeseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractMagnetic Janus particles (MJPs), fabricated by covering a non-magnetic spherical particle with a hemispherical magnetic in-plane exchange-bias layer system cap, display an onion magnetization state for comparably large diameters of a few microns. In this work, the motion characteristics of these MJPs will be investigated when they are steered by a magnetic field landscape over prototypical parallel-stripe domains, dynamically varied by superposed external magnetic field pulse sequences, in an aqueous medium. We demonstrate, that due to the engineered magnetization state in the hemispherical cap, a comparably fast, directed particle transport and particle rotation can be induced. Additionally, by modifying the frequency of the applied pulse sequence and the strengths of the individual field components, we observe a possible separation between a combined or an individual occurrence of these two types of motion. Our findings bear importance for lab-on-a-chip systems, where particle immobilization on a surface via analyte bridges shall be used for low concentration analyte detection and a particle rotation over a defined position of a substrate may dramatically increase the immobilization (and therefore analyte detection) probability.eng
dcterms.accessRightsopen access
dcterms.creatorHuhnstock, Rico
dcterms.creatorReginka, Meike
dcterms.creatorTomiţa, Andreea
dcterms.creatorMerkel, Maximilian
dcterms.creatorDingel, Kristina
dcterms.creatorHolzinger, Dennis
dcterms.creatorSick, Bernhard
dcterms.creatorVogel, Michael
dcterms.creatorEhresmann, Arno
dcterms.source.articlenumber21794
dcterms.source.identifiereissn:2045-2322
dcterms.source.journalScientific reportseng
dcterms.source.volumeVolume 11
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41598_021_01351_x.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections