No Chaos in Dixon's System

dc.contributor.corporatenameKassel, Universität Kassel, Fachbereich Mathematik und Naturwissenschaften, Institut für Mathematikger
dc.date.accessioned2020-03-06T09:56:21Z
dc.date.available2020-03-06T09:56:21Z
dc.date.issued2020
dc.identifierdoi:10.17170/kobra-202002161006
dc.identifier.urihttp://hdl.handle.net/123456789/11470
dc.language.isoengeng
dc.rightsNamensnennung-NichtKommerziell-KeineBearbeitung 3.0 Deutschland*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/de/*
dc.subjectDixon´s systemeng
dc.subjectsingularityeng
dc.subjectblow-upeng
dc.subjecthomoclinic orbitseng
dc.subjectchaoseng
dc.subject.ddc510
dc.titleNo Chaos in Dixon's Systemeng
dc.typePreprint
dc.type.versionsubmittedVersion
dcterms.abstractThe so-called Dixon system is often cited as an example of a two-dimensional (continuous) dynamical system that exhibits chaotic behaviour, if its two parameters take their value in a certain domain. We provide first a rigorous proof that there is no chaos in Dixon's system. Then we perform a complete bifurcation analysis of the system showing that the parameter space can be decomposed into sixteen different regions in each of which the system exhibits qualitatively the same behaviour. In particular, we prove that in some regions two elliptic sectors with infinitely many homoclinic orbits exist which can easily create in numerical computations the impression of chaotic behaviour.eng
dcterms.accessRightsopen access
dcterms.creatorSeiler, Werner M.
dcterms.creatorSeiß, Matthias
dcterms.extent21 Seiten
dcterms.isPartOfMathematische Schriften Kassel ;; [2020, 01]
dcterms.source.journalMathematische Schriften Kasseleng
dcterms.source.volume[2020, 01]
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
prep2001.pdf
Size:
3.71 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description: