Potentials and Limitations of WorldView-3 Data for the Detection of Invasive Lupinus polyphyllus Lindl. in Semi-Natural Grasslands

dc.date.accessioned2022-01-05T14:38:15Z
dc.date.available2022-01-05T14:38:15Z
dc.date.issued2021-10-28
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.identifierdoi:10.17170/kobra-202112235346
dc.identifier.urihttp://hdl.handle.net/123456789/13489
dc.language.isoengeng
dc.relation.doidoi:10.3390/rs13214333
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectinvasive specieseng
dc.subjectWorldView-3eng
dc.subjectgrasslandeng
dc.subjectmachine learningeng
dc.subjectfeature selectioneng
dc.subject.ddc600
dc.subject.ddc630
dc.subject.swdInvasive Artger
dc.subject.swdVielblättrige Lupineger
dc.subject.swdGrünlandger
dc.subject.swdMaschinelles Lernenger
dc.subject.swdSensorger
dc.subject.swdDatenger
dc.titlePotentials and Limitations of WorldView-3 Data for the Detection of Invasive Lupinus polyphyllus Lindl. in Semi-Natural Grasslandseng
dc.typeAufsatz
dc.type.versionpublishedVersion
dcterms.abstractSemi-natural grasslands contribute highly to biodiversity and other ecosystem services, but they are at risk by the spread of invasive plant species, which alter their habitat structure. Large area grassland monitoring can be a powerful tool to manage invaded ecosystems. Therefore, WorldView-3 multispectral sensor data was utilized to train multiple machine learning algorithms in an automatic machine learning workflow called ‘H2O AutoML’ to detect L. polyphyllus in a nature protection grassland ecosystem. Different degree of L. polyphyllus cover was collected on 3 × 3 m² reference plots, and multispectral bands, indices, and texture features were used in a feature selection process to identify the most promising classification model and machine learning algorithm based on mean per class error, log loss, and AUC metrics. The best performance was achieved with a binary classification of lupin-free vs. fully invaded 3 × 3 m² plot classification with a set of 7 features out of 763. The findings reveal that L. polyphyllus detection from WorldView-3 sensor data is limited to large dominant spots and not recommendable for lower plant coverage, especially single plant detection. Further research is needed to clarify if different phenological stages of L. polyphyllus as well as time series increase classification performance.eng
dcterms.accessRightsopen access
dcterms.creatorSchulze-Brüninghoff, Damian
dcterms.creatorWachendorf, Michael
dcterms.creatorAstor, Thomas
dcterms.source.articlenumber4333
dcterms.source.identifiereissn:2072-4292
dcterms.source.issueIssue 21
dcterms.source.journalRemote Sensingeng
dcterms.source.volumeVolume 13
kup.iskupfalse

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
remotesensing_13_04333.pdf
Size:
4.85 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections