Comparative Life Cycle Assessment of Carbon Dioxide Mineralization Using Industrial Waste as Feedstock to Produce Cement Substitutes

dc.date.accessioned2023-05-25T14:25:19Z
dc.date.available2023-05-25T14:25:19Z
dc.date.issued2023-05-16
dc.description.sponsorshipGefördert durch den Publikationsfonds der Universität Kasselger
dc.identifierdoi:10.17170/kobra-202305258114ger
dc.identifier.urihttp://hdl.handle.net/123456789/14762
dc.language.isoengger
dc.relation.doidoi:10.3390/en16104118
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmineral carbonationger
dc.subjectmineralizationger
dc.subjectlife cycle assessmentger
dc.subjectCO₂ capture and storageger
dc.subjectCO₂ capture and utilizationger
dc.subject.ddc540ger
dc.subject.swdVerkohlungger
dc.subject.swdUmweltbilanzger
dc.subject.swdCarbon dioxide capture and storageger
dc.titleComparative Life Cycle Assessment of Carbon Dioxide Mineralization Using Industrial Waste as Feedstock to Produce Cement Substitutesger
dc.typeAufsatzger
dc.type.versionpublishedVersionger
dcterms.abstractThe mineralization of carbon dioxide offers a way to permanently sequester carbon while producing construction materials, combining the concepts of carbon capture and utilization (CCU) and carbon capture and storage (CSS). However, it is important to evaluate different mineralization processes in terms of their environmental impact. This study provides the first comparative life cycle assessment (LCA) analysis that focuses on the utilization of industrial waste materials. We analyzed the climate and material footprint of six mineralization pathways from cradle to gate using steel slag, concrete waste, municipal solid waste incineration (MSWI) ash, and olivine as feedstock. A sensitivity analysis was used to identify the factors with the greatest impact on environmental performance. Our results show that all processes generate significantly negative values for the global warming impact (GWI) and raw material input (RMI), ranging from −0.6 to −1.3 kg CO2eq.kg−¹feed and −0.6 to −1.6 kg kg−¹feed, when cement substitute is considered as product. Five out of six processes produce negative values for these factors when sand is considered as a product. When operated as a CCS technology without product use, the processes result in GWI values ranging from −0.13 to 0.01 kg CO2eq.kg−¹feed. Our study confirms that industrial mineralization is a promising technology for reducing carbon dioxide emissions. Future process development should focus on replacing carbon dioxide-intensive products while balancing energy and chemical demand with process efficiency.ger
dcterms.accessRightsopen accessger
dcterms.creatorDigulla, Finn-Erik
dcterms.creatorBringezu, Stefan
dcterms.extent22 Seiten
dcterms.source.articlenumber4118
dcterms.source.identifiereissn:1996-1073ger
dcterms.source.issueIssue 10ger
dcterms.source.journalEnergiesger
dcterms.source.volumeVolume 16ger
kup.iskupfalseger

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
energies_16_04118_v2.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.03 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections